

WISNIEWSKI

PLANUNG -STATIK - KONSTRUKTION

STRUCTURAL ANALYSIS / STATISCHE BERECHNUNG

PROJECT-NR.:	20004	STATIK
PROJECT:	Unterkonstruktion Brücken Stahlbaukonstruktion 2020	laufkran
CUSTOMER/ AUFTRAGGEBER:	Arnold Damm GmbH Metalloberflächenveredelur	ng
	Hergelsbendenstraße 6-10 D – 52080 Aachen	

Revision00

Zu dieser statischen Berechnung gehört der Übersichtsplan Stahlbau S-01

PREPARED / AUFGESTELLT:

DATE / DATUM:

06.02.2020

PAGES / SEITEN: 1 – 107

DIPL.-ING. JAN WISNIEWSKI

auf der Liste der "Qualifizierten Tragwerksplaner" der IKBAU-NRW geführt unter der Nummer QT1946

THE STRUCTURAL ANALYSIS IS ONLY PREPARED FOR METALLBAU RUF. IF THIS CALCULATION SHOULD BE PASSED TO A THIRD PARTY A PERMISSION OF THE ORIGINATOR IS NEEDED. THE CUSTOMER AGREES TO MY OFFICE TO PUBLISH THIS PROJECT DATAS AS REFERECE ON MY HOMEPAGE.

DIE STATISCHE BERECHNUNG IST AUSSCHLIESSLICH AUFGESTELLT FÜR METALLBAU RUF. EINE WEITERGABE AN DRITTE IST NUR MIT VORHERIGER GENEHMIGUNG DES AUFSTELLERS MÖGLICH. EINE VERÖFFENTLICHUNG JEGLICHER ART IST NICHT GESTATTET. DER BH STIMMT MEINEM BÜRO ZU, DIESE PROJEKTDATEN ALS REFERENZ AUF DER SEITE VON AIXINEERING ZU VERÖFFENTLICHEN.

WISNIEWSKI - AIXINEERING KÖNIGIN ASTRID STRASSE 18 B-4710 HERBESTHAL **BELGIUM** FON: +49 (0)173 6404273

INFO@AIXINEERING.DE

CBC WELKENRAEDT IBAN: BE54 7320 4502 2397 BIC: CREGBEBB

WWW.AIXINEERING.DE

HAFTPFLICHTVERSICHERER ■ AIA ■ KAISERSTRAßE 13 D-40221 DÜSSELDORF ■ K-Nr. 02026860 ■ V-NR.: 057-2774-170424-029 ■ GESCHÄFTSFÜHRER: WISNIEWSKI

PERSÖNLICH HAFTENDE GESELLSCHAFTER: WISNIEWSKI ■ KÖNIGIN ASTRID STR. 18 ■ 4710 WELKENRAEDT ■ MwSt.-Nr.: BE.0682.659.274 ■ FINANZAMT EUPEN ■ MITGLIED DER IHK-EUPEN ■ Reg.-Nr.:3042 ■

MwSt.-Nr.: DE.42.334.10203 ■ FINANZAMT TRIER ■

USt.-IdNr.: DE316324355 ■ USt.-IdNr.: NL0011.05.337.B69

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Inhaltsverzeichnis

06.02.2020 Seite: 2

Inhaltsverzeichnis

	Vorbemerkungen		Seite: 3
1 L	astannahmen		
1.1	Position: 1.1 Lastannahmen	Beton-Sockel	Seite: 12
2 S	tahlbau Unterkonstruktion		
2.1	Position: 2.1 Stahlbau Unterkonstruktion	Berechnungsprotokoll	Seite: 13
2.2	Position: 2.1.1 Rahmenecke	Geschraubte Vouten Verbindung	Seite: 63
2.3	Position: 2.2.1 Kranbahnträger	1Feldträger HEA220	Seite: 66
2.4	Position: 2.2.2 Kranbahnträger alternativ	1Feldträger+Kragarm HEA220	Seite: 77
3 V	erankerungen		
3.1	Position: 3.1 Auflagerverankerung HEA220	. Anschlusskräfte aus Pos.2.1	Seite: 88
3.2	Position: 3.2 Auflagerverankerung ORO100x4	Anschlusskräfte aus Pos.2.1	Seite: 98

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273

URL: aixineering.de

Vorbemerkungen

06.02.2020 Seite: 3

A VORBEMERKUNGEN

A.1 EC - NORMEN, VORSCHRIFTEN

DIN EN 1990 / Eurocode 0 Basis of structural design Grundlagen der Tragwerkplanung

DIN EN 1991 / Eurocode 1 Actions on structures Einwirkungen auf Tragwerke

DIN EN 1992 / Eurocode 2 Dimensionnement du béton et du béton armé Bemessung Beton- und Stahlbetonbau

DIN EN 1993 / Eurocode 3 Design of steel structures Bemessung und Konstruktion von Stahlbauten

DIN EN 1995 / Eurocode 5
Design of timber structures
Bemessung und Konstruktion von Holzbauten

DIN EN 1996 Bemessung von Mauerwerk

DIN EN 1997 Bemessung von Baugrund

DIN EN 13814

Fairground and amusement park machinery and Bemessung und Konstruktion von Fliegenden Bauten

Technical rules of action for booth construction.
Technische Messe-Richtlinien
Or equivalent national versions of the aforementioned standards.

	DATE:
erkonstruktion Kranbahnanlage Haaren 20	20004
CT: PR	PROJECT-NR:

Tel.: +49 173 640 4273

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren

Vorbemerkungen 06.02.2020

Seite: 4

A.2 SONSTIGE UNTERLAGEN

EDV-Programme STATIK (a Nemetschek Company)

Friedrich und Lochner Programme SCIA Engineering 18.0

EDV-Programme ANSCHLUSS-STATIK

Berechnungsprogramm der Firma Fischer

EDV-Programme CAD (a Nemetschek Company)

ALLPLAN 2020

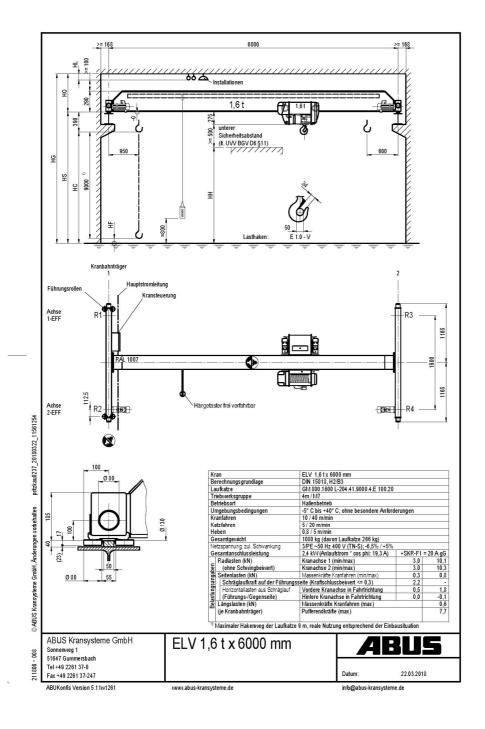
Literatur

Wendehorst Bautechnische Tabellen für Ingenieure, 31. Auflage Typisierte Verbindungen im Stahlhochbau

Kahlmeyer: Stahlbau nach DIN 18800

Stahlbau: Grundbegriffe und Bemessungsverfahren, 1. Auflage

Lohse: Stahlbau I, 24. Auflage


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Vorbemerkungen

06.02.2020 Seite: 5

Technisches Datenblatt

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Vorbemerkungen

06.02.2020

Seite: 6

Kran- klassifizierung	S3	(für den Nachweis	des Kranbahnträgers)					
Dynamische Beiwerte	e pi:							
φ1	1,10	Auf die Masse des	Krans einwirkende Beschleunigung aus Anheben	und Gravitation				
φ2	1,10	Trägheit und Grav	itation beim Anheben einer unbehinderten Last vo	m Boden				
ф3	1,00	151	itation beim plötzlichen Loslassen eines Teiles der					
φ4	1,00		ı über Unebenheiten					
φ 5,Kr	1,80		leunigung durch Kranfahrantriebe					
φ 6,dyn	1,05	Dynamische Prüf	0. 101					
φ6,stat	1,00	Statische Prüflast						
φ7,Kr	1,25	Lasten aus Puffer	zäffen					
	- 2	l	Maken					
Lasteinwirkungen und	i relevante	Kraftanteile:			1			
Radlasten (vertikal)	Kraftan	iteil aus Masse des	Krans und der Katze(n) je Kranachse	Qc,min,1	2,2	Qc,max,1	3,0	[kh
			55 3455	Qc,min,2	2,2 0,8	Qc,max,2	3,2	[kh
	Kraftan	iteil aus Masse der	Hublast je Kranachse	Qh,min,1	0,8	Qh,max,1	7,1	[kh
	+			Qh,min,2	U,8	Qh,max,2	7,1	ĮΚΝ
Seitenlasten (horizontal)	Kraft ar Krans r	us Beschleunigung mit Hublast (Masse	des nkraft)	HT,min	0,1	HT,max	0,5	[kN
	Schräg	laufkraft (Kraftschl	ssbeiwert <= 0,3)	s	'		2,2	[kN
	-			HS,min,1	0,0	HS,max,1	-0,1	[kN
	Horizor	ntalkraft aus Schräg	lauf je Kranachse	HS,min,1 HS.min,2	0,0	HS,max,1 HS,max,2	-0,1 1,8	[kN
Längslasten	Kraft a	us Beschleunigung	des	HL	0,0	Подпахд	0,4	[kh
(horizontal) (je Kranbahn-	Krans	mit Hublast (Masse	nkraft)	HL.			0,4	[KI
träger)	Kraft a	us Pufferstoß (Puffe		На			6,2	[kř
Kranachse		Qc.mm.1 Qb.min,1 HS.min,1 HT.min		Hat	i min	Qe,max,1 Qh,max,1 HT,max H	*	[kt
Kranachse		Qe.min,1 Qh.min,1	erendkraft)	Heil		Qe,max,1 Qh,max,1 HT,max H	S,maxt	[kh
Kranachse 1-IFF 2-IFF Die Sközze stellt die K Die maßgebende Kra	iranfahrsituat n fahrsituat n sin ek n fak	Qc.min.1 HS.min.1 HT.min HS.min.2 HT.min Qc.min.2 Qh.min.2	HL S S HBI g der minimalen und maximalen Lasten dar. anaus führtung variieren (Fahrtrichtung, Katzstellun, ber kürfartelle und müssen mit dem jeweiligen Dy e 2	Kranfahrtrichtung g und/oder Führungsmitt	Hi Hi	Qe,max,1 Qh,max,1 HT,max H	S,maxt	[kh
Kranachse 1-IFF 2-IFF Die Skizze stellt die K Die maßgebende Kra Alle Lasteinwirkungen	iranfahrsitu nahrsituati n DN EN 104 tenmaßes eme Gn	Qe.min.1 HS.min.1 HT.min Qs.min.2 HT.min Qs.min.2 HT.min Qs.min.2 Qh.min.2 Asteristische statische sta	HL S S HBI g der minimalen und maximalen Lasten dar. anaus führtung variieren (Fahrtrichtung, Katzstellun, ber kürfartelle und müssen mit dem jeweiligen Dy e 2	Kranfahrtrichtung g undloder Führungsmilt namik beiwert ei beauß o	Hi Hi	Qe,max,1 Qh,max,1 HT,max H	S,maxt	[kN
Kranachse 1-IFF 2-IFF Die Skizze stellt die K Die maßgebende Kra Alle Lasteinwirkunger Toleranz des Spumit	iranfahrsitu nahrsituati n DN EN 104 tenmaßes eme Gn	Qe.min.1 HS.min.1 HT.min Qs.min.2 HT.min Qs.min.2 HT.min Qs.min.2 Qh.min.2 Asteristische statische sta	s HBI g der minimalen und maximalen Lasten dar, anausführung variieren (Fahrtrichtung, Katzstellun he Kraflanleile und müssen mit dem jeveeligen Dye 2-4-5 mm	Kranfahrtrichtung g undloder Führungsmilt namik beiwert ei beauß o	Hi Hi	HI max H On max H On max H On max H	S,maxt	[kN

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

www.abus-kransysteme.de

ABUKonfis Version 5.11w1261

Königin Astrid Straße 18

Tel.: +49 173 640 4273

URL: aixineering.de

06.02.2020

Vorbemerkungen

Herbesthal **BAUSTOFFE A.3**

> Beton C12/15 - C50/60 Betonstahl BSt 500 S + M

Stahl: S235JR+AR und S355J2+N, nach EN 10025-2:2004-10

Acier / Stahl:

S 235 JR

(lt. Auftraggeber)

Dicken:

Dicken t = 3 mm Dicken t = 4 mm Dicken t = 5 mm Dicken t = 6 mm Dicken 8 mm t = Dicken t = 10 mmDicken t = 20 mm

Edelstahl V2A: EN 1.4301 nach EN 10088-2 (X 5 CrNi 18-10)

Edelstahl V4A: EN 1.4571 nach EN 10088-2 (X 6 CrNiMoTi 17-12-2)

DEUTSCHE EDELSTAHLWERKE Edelstahl Rostfrei - Verfestigungsverhalten Korrosions-Festigkeitsklassen Werkstoffbeständigkeits-(mindest Streckgrenze) Kurzname klasse / Nr. Anforderungen S235 S275 S355 S460 S690 X X X 1 1.4003 X2CrNi12 gering X 1.4016 X6Cr17 CrNi-Stähle: 1.4301 X5CrNi18-10 X X X X V2A: X X X X 1.4541 X6CrNiTi18-10 II günstig mäßig X X 1.4318 X2CrNiN18-7 1.4567 X3CrNiCu18-9-4 X X X X CrNiMo-X X X X 1.4401 X5CrNiMo17-12-2 Stähle: X X X X X 1.4404 X2CrNiMo17-12-2 V4A: mittel X X X X X 1.4571 X6CrNiMoTi17-12-2 teurer X 1.4439 X2CrNiMoN17-13-5 X 1.4539 X1NiCrMoCuN25-20-5 X X 1.4462 X2CrNiMoN22-5-3 IV X X 1.4565 X3CrNiMnMoNbN23-18-5-4 stark X X X X 1.4529 X1NiCrMoCuN25-20-7 X X 1.4547 X1CrNiMoCuN20-18-6 Auszug aus Bauaufsichtlicher Zulassung Z 30.3-6

Korrosionsschutz gemäß DASt 022 bzw. EN ISO 14713 Holzbaustoffe nach DIN 1052:2008-12

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Vorbemerkungen 06.02.2020

Seite: 8

A.4 ALLGEMEINE TECHNISCHE BESCHREIBUNG

Die vorliegende statische Berechnung behandelt eine Unterkonstruktion aus Stahl für einen Brückenlaufkran wie z.B. den ABUS Kran ELV Auftraggeber ist die Firma Arnold Damm GmbH in Haaren.

Ausführende Firma: Metallbau Ruf

Die UK-Außenmaße betragen ca. 10,00m x 5,00m x 2,50m (L x B x H).

KONSTRUKTION

Profile und Detailpunkte können der nachfolgend in der Statik behandelten Konstruktion entnommen werden.

Untergeordnete, nicht nachgewiesene Bauteile können nach handwerklichen Gesichtspunkten ausgebildet werden.

Die Verankerung der Stahlstützen erfolgt auf dem Stahlbeton – Boden, der mindestens eine Festigkeitsklasse von C25/30 aufweisen sollte. Laut Auftraggeber handelt es sich hier um eine 50 cm dicke Bodenplatte.

Die Befestigung wird mit Schwerlastdübeln, deren Angaben in der nachfolgenden Statik bzw. der Zulassung zu beachten sind, erfolgen! Dies gilt besonders für die Einhaltung der Randabstände und der minimalen Bauteildicke bei der Gründung.

Anprall-Lasten sind durch geeignete Maßnahmen abzuwehren.

Der Eurocode 3 "Stahlbauten, Bemessung und Konstruktion" stellt ebenfalls Forderungen an die Durchbiegungen und Verschiebungen einer Stahlkonstruktion.

Die maximalen Vertikalen Durchbiegungen und horizontalen Verschiebungen entsprechend dieser Statik sind bei der Konstruktion nach Absprache mit dem Bauherrn zu berücksichtigen.

Der Standsicherheitsnachweis gilt nur für den Endzustand und umfasst somit keine Bauzustände.

Für alle nicht nachgewiesenen Bauzustände während der Baumaßnahme ist von ausführenden Unternehmern die Stabilität aller Bauteile durch Abstützungen und Versteifungen sicherzustellen.

Anprall-Lasten sind durch geeignete Maßnahmen abzuwenden.

Die Weiterleitung der Auflagerkräfte der Stahlstützen in den Baugrund ist nicht Gegenstand dieser Statischen Berechnung.

Die Konstruktion wird nicht unter Berücksichtigung von Erdbebenersatzlasten berechnet; wohl aber mit Stabilisierungslasten.

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Unterkonstruktion Kranbahnanlage Haaren Tel.: +49 173 640 4273

Vorbemerkungen

Herbesthal URL: aixineering.de 06.02.2020 Seite: 9

Informationen zur Schweißnahtgüte (Kranbahn)

EXC-Klasse:

Schadensfolgeklasse: gewöhnliche Stahlkonstruktion => CC2 Beanspruchungskategorie: statisch, vorwiegend ruhend belastet => SC1 => PC2 Herstellungskategorie: geschweißt: <S355 t =25 mm

Schadensfolgeklassen		CC1		CC2		CC3	
Beanspruchungskategorien		SC1	SC2	SC1	SC2	SC1	SC2
Haratallungakatagarian	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 ^a	EXC3 a
Herstellungskategorien	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 ^a	EXC4

EXC4 sollte bei außergewöhnlichen Tragwerken oder bei Tragwerken mit hohen Versagensfolgen angewendet werden, entsprechend der nationalen Vorschriften

=> Gewählte EXC-Klasse: **EXC2** (üblicher Hochbau)

Umfang der Schweißnahtprüfung

Schweißnahtart	Werkstatt- und Baustellennähte			
Schweishaltart	EXC2	EXC3	EXC4	
Zugbeanspruchte querverlaufende Stumpfnähte und teilweise durchgeschweißte Nähte in zugbeanspruchten Stumpfstößen:				
<i>U</i> ≥ 0,5	10 %	20 %	100 %	
U < 0,5	0 %	10 %	50 %	
Querverlaufende Stumpfnähte und teilweise durchgeschweißte Nähte:				
in Kreuzstößen	10 %	20 %	100 %	
in T-Stößen	5 %	10 %	50 %	
Zug- oder scherbeanspruchte querverlaufende Kehlnähte:				
mit a > 12 mm oder t > 20 mm	5 %	10 %	20 %	
mit $a \le 12$ mm und $t \le 20$ mm	0 %	5 %	10 %	
Längsnähte und Nähte angeschweißter Steifen	0 %	5 %	10 %	

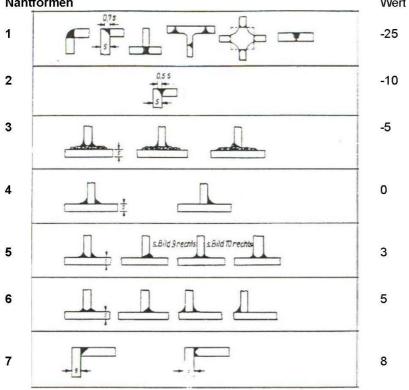
ANMERKUNG 1 Längsnähte verlaufen parallel zur Bauteilachse. Alle anderen Nähte werden als querverlaufende Nähte betrachtet. ANMERKUNG 2 U = Ausnutzungsgrad von Schweißnähten unter quasi-statischen Einwirkungen. $U = E_d/R_d$, wobei E_d die größte Schweißnahtschnittgröße und Rd die Schweißnahtbeanspruchbarkeit im Grenzzustand der Tragfähigkeit ist. ANMERKUNG 3 Die Symbole a und t beziehen sich auf die Nahtdicken und den dicksten Grundwerkstoff im Anschluss

Sichtprüfung (Visual Testing): 100%

Zerstörungsfreie Prüfung: Kehlnähte mit a \leq 12 mm und t \leq 20 mm => 0%

> Kehlnähte mit a > 12 mm und t > 20 mm => 5% [Verbindungsbleche t > 20 mm (z.B. First, Fußpunkt oder Rahmenecke)]

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020


Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Vorbemerkungen

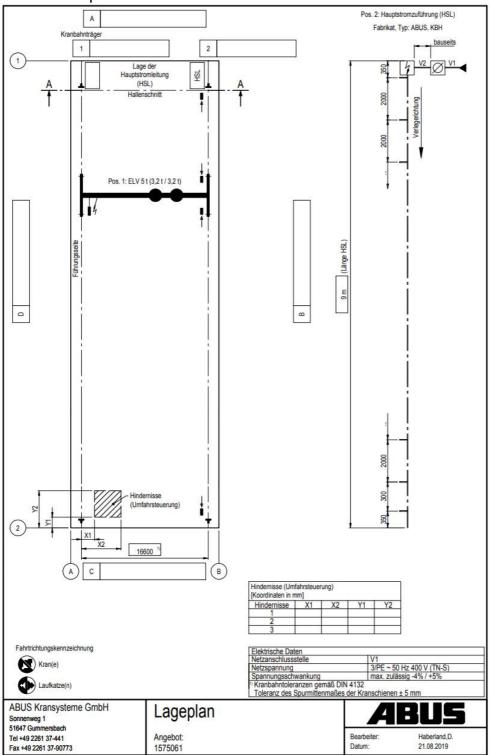
06.02.2020 Seite: 10

Z-Güte der Schweißnähte

<u>Eingabe</u>	<u>Berech</u>	neter Wert
"a" - Maß in mm : oder "D" - Maß (wirksame Nahtdicke) in mm : Schweißnaht - Form und Lage (1 bis 7) :	8 	0
Steifigkeit im Nahtbereich bedingt durch die Blechdicke in mm :	30	6
Steifigkeit im Bauteil : wenig steif : freies Schrumpfen möglich = 1 = steif : Schrumpfen möglich = 2 = sehr steif : hohe Schumpfbehinderung = 3 =	1	0
Fertigung (Vorwärmtemperatur eingeben) : ohne Vorwärmen = 0° oder Vorwärmen mit 50°/80° oder 100°	0	0
Der errechnete Wert für die Z-Güte beträgt :		10
Erforderlic	he Z-Güte :	0
Nahtformen		Wert

LIENT:	DATE:
nterkonstruktion Kranbahnanlage Haaren 2	20004
ROJECT: PF	PROJECT-NR:

Königin Astrid Straße 18


Herbesthal

06.02.2020 Seite: 11

A.5 ÜBERSICHT - ZEICHNUNG

Hier als Beispiel:

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18

Herbesthal

Unterkonstruktion Kranbahnanlage Haaren

Position: 1.1 Lastannahmen

1.1 LASTANNAHMEN

Ständige Lasten

Ständige Lasten für den Einträger Laufkran mit Walzprofil:

Tel.: +49 173 640 4273

URL: aixineering.de

ELV 1,6to x 6,00m

Kran Gesamtgewicht g= 10,80 kN Katz Gewicht g= 2,66 kN

	Hauptfeld	Endfeld
F1	10,10 kN	3,00 kN
F2	10,30 kN	3,00 kN
Schräg	2,20 kN	2,20 kN
Massen	5,00 kN	1,50 kN
Pufferlast	7,70 kN	

Verkehrslasten

Hublast

Hubklasse: = HC2
Beanspruchungsklasse: = S4
Verkehrslast Kategorie: Q_h = = 16,00 kN

Stabilisierungslasten: 1/20 der vertikalen Lasten = V/20

EG Stahlkonstruktion = 18,0 kN

EG Krangewicht = 26,8 kN

Summe = 44,8 kN

 $1/20 \times 45 \text{ kN}$ = 2,25 kN

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18

Herbesthal

Position: 2.1 Stahlbau Unterkonstruktion

2. Stahlbau Unterkonstruktion

2.1 Position: 2.1 Stahlbau Unterkonstruktion Berechnungsprotokoll

Tel.: +49 173 640 4273

URL: aixineering.de

1. Verzeichnistabelle

· VCIZCICIIIIStabelle	
1. Verzeichnistabelle	1
2. System	2
2.1. Analysemodel	2
2.2. Strukturmodel	3
2.3. System mit Stab- und Knotennummern	4
2.4. System mit Profilkennung	5
3. Daten	6
3.1. Material	6
3.2. Knoten	6
3.3. Stäbe	6
3.4. Knotenauflager	7
4. Belastung	8
4.1. Lastfälle	8
4.1.1. Lastfälle - LC1	8
4.1.1.1. Belastung	9
4.1.2. Lastfälle - LC2	10
4.1.2.1. Einzellast auf Stab	10
4.1.2.2. Belastung	11
4.1.3. Lastfälle - LC3	12
4.1.3.1. Einzellast auf Stab	12
4.1.3.2. Belastung 4.1.4. Lastfälle - LC4	13 14
4.1.4.1. Einzellast auf Stab	14
4.1.4.2. Belastung	15
4.1.5. Lastfälle - LC5	16
4.1.5.1. Einzellast auf Stab	16
4.1.5.2. Belastung	17
4.1.6. Lastfälle - LC6	18
4.1.6.1. Einzellast auf Stab	18
4.1.6.2. Belastung	19
4.2. Lastgruppen 4.3. Kombinationen	20 20
	=-
5. Ergebnisse	22
5.1. Verformungen 5.1.1. Stabverformungen	22 22
5.1.1. Stabverformungen in Z-Richtung	22
5.2. Schnittgrößen	23
5.2.1. Stabschnittgrößen	24
5.2.2. Stabschnittgrößen: N	25
5.2.3. Stabschnittgrößen: Vz	26
5.2.4. Stabschnittgrößen: My	27
5.3. Nachweise gemäß EC	28
5.3.1. EC-EN 1993 Stahlnachweis GZT	28
5.3.2. Auslastung gemäß EC3	29
5.3.3. EC-EN 1993 Stahlnachweis GZT	30
5.4. Auflagerreaktionen	45
5.4.1. Reaktionen	45
5.4.2. 1,0-fache Reaktionen	46
5.4.3. Reaktionen	47
5.4.4. Gamma-fache Reaktionen	48
5.4.5. Fundamenttabelle	49

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273

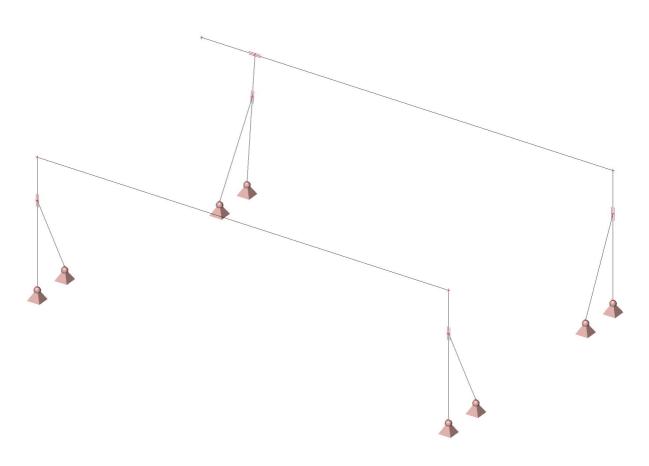
URL: aixineering.de


Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 14

2. System

2.1. Analysemodel


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

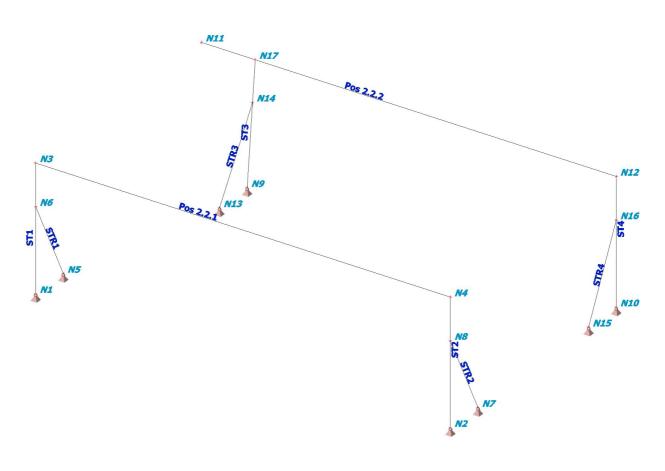
Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 15

2.2. Strukturmodel

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

B-4710 Herbesthal Tel.: +49 173 640 4273

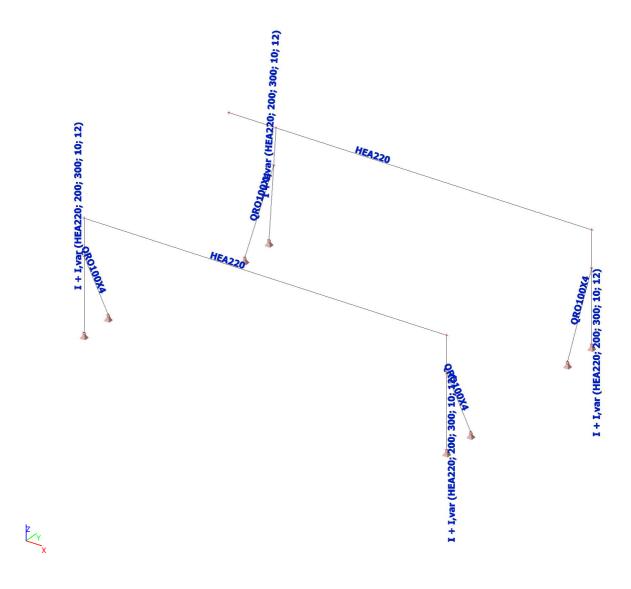

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 16

2.3. System mit Stab- und Knotennummern

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020


Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

Seite: 17

2.4. System mit Profilkennung

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Tel.: +49 173 640 4273

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 18

3. Daten

3.1. Material

Stahl EC3

Name	Massendichte [kg/m³]	E-Mod [MPa]	Querdehnzahl	Intere Grenze [mm]	Obere Grenze [mm]	Fy (Bereich) [MPa]	Fu (Bereich) [MPa]
		G-Mod [MPa]	T-Dehnzahl [m/mK]				
S 235	7850,0	2,1000e+05	0.3	0	40	235,0	360,0
		8,0769e+04	0,00	40	80	215,0	360,0

3.2. Knoten

Name	Koord.X	Koord.Y	Koord.Z
	[m]	[m]	[m]
N1	0,000	0,000	0,000
N2	10,000	0,000	0,000
N3	0,000	0,000	3,000
N4	10,000	0,000	3,000
N5	0,000	1,000	0,000
N6	0,000	0,000	2,000
N7	10,000	1,000	0,000
N8	10,000	0,000	2,000
N9	1,100	6,000	0,000

Name	Koord.X [m]	Koord.Y [m]	Koord.Z [m]
N10	10,000	6,000	0,000
N11	0,000	6,000	3,000
N12	10,000	6,000	3,000
N13	1,100	5,000	0,000
N14	1,229	6,000	2,000
N15	10,000	5,000	0,000
N16	10,000	6,000	2,000
N17	1,294	6,000	3,000

3.3. Stäbe

Name	Querschnitt	Layer	Länge [m]	Form	Anf.Knoten	Тур
					Endknoten	FEM-Typ
ST1	HEA-VOUTE - I + I,var (HEA220; 200; 300; 10; 12)	Layer1	3,000	Linie	N1	Stütze (100)
					N3	Standard
ST2	HEA-VOUTE - I + I,var (HEA220; 200; 300; 10; 12)	Layer1	3,000	Linie	N4	Stütze (100)
					N2	Standard
Pos 2.2.1	Riegel HEA - HEA220	Layer1	10,000	Linie	N3	Träger (80)
					N4	Standard
STR1	QRO100x4 - QRO100X4	Layer1	2,236	Linie	N5	Wandverband (0)
					N6	Standard
STR2	QRO100x4 - QRO100X4	Layer1	2,236	Linie	N7	Wandverband (0)
					N8	Standard
ST3	HEA-VOUTE - I + I,var (HEA220; 200; 300; 10; 12)	Layer1	3,006	Linie	N9	Stütze (100)
					N17	Standard
ST4	HEA-VOUTE - I + I,var (HEA220; 200; 300; 10; 12)	Layer1	3,000	Linie	N12	Stütze (100)
					N10	Standard
Pos 2.2.2	Riegel HEA - HEA220	Layer1	10,000	Linie	N11	Träger (80)
					N12	Standard
STR3	QRO100x4 - QRO100X4	Layer1	2,240	Linie	N13	Wandverband (0)
					N14	Standard
STR4	QRO100x4 - QRO100X4	Layer1	2,236	Linie	N15	Wandverband (0)
					N16	Standard

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 19

3.4. Knotenauflager

Name	Knoten	System	Тур	Х	Υ	Z	Rx	Ry	Rz
Aufl1	N1	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl2	N2	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl5	N5	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl6	N7	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl3	N9	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl4	N10	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl7	N13	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Aufl8	N15	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 20

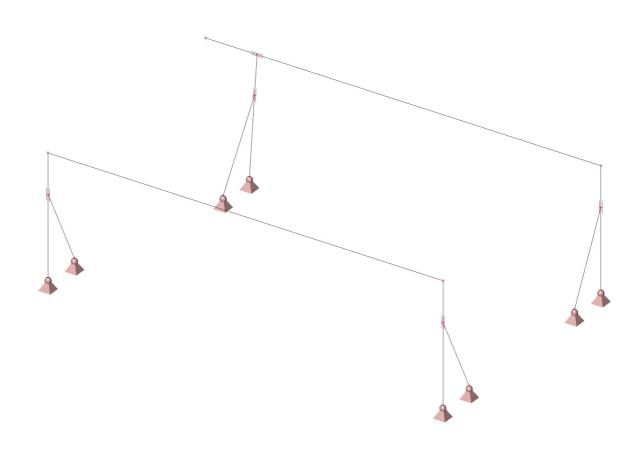
4. Belastung

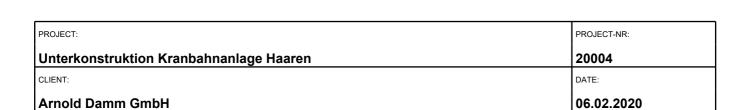
4.1. Lastfälle

4.1.1. Lastfälle - LC1

Name	Beschreibung	Einwirkungstyp	Lastgruppe	Richtung
	Spez	Lasttyp		
LC1	EG	Ständig	LG1	-Z
		Eigengewicht		

	DATE:
erkonstruktion Kranbahnanlage Haaren 20	20004
CT: PR	PROJECT-NR:


Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion


06.02.2020

Seite: 21 AIXIN

4.1.1.1. Belastung

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 22

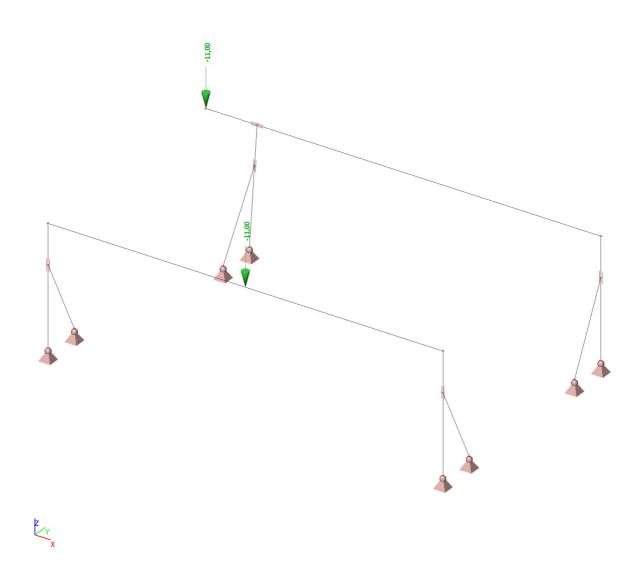
4.1.2. Lastfälle - LC2

Name	Beschreibung	Einwirkungstyp	Lastgruppe
	Spez	Lasttyp	
LC2	ständig	Ständig	LG1
		Standard	

4.1.2.1. Einzellast auf Stab

Name	Stab	System	Wert - F [kN]	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
EG1	Pos 2.2.1	GKS	-11,00	0.500	Relativ	1
	LC2 - ständig	Z	Kraft		Von Anfang	
EG2	Pos 2.2.2	GKS	-11,00	0.000	Relativ	1
	LC2 - ständig	Z	Kraft		Von Anfang	

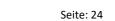
PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020


Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

Seite: 23

4.1.2.2. Belastung


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273

URL: aixineering.de

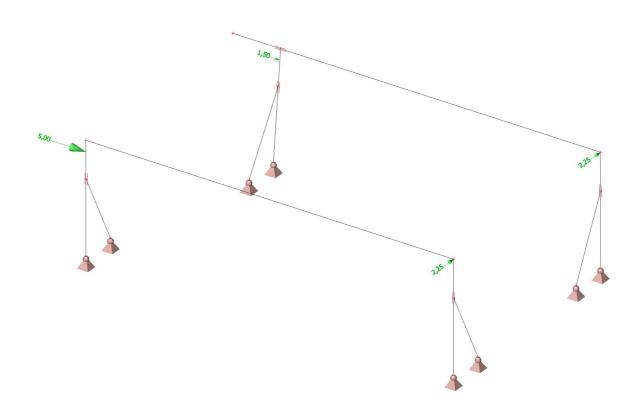
Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

4.1.3. Lastfälle - LC3

Name	Beschreibung	Einwirkungstyp	Lastgruppe	Dauer	Vorherrschender Lastfall
	Spez	Lasttyp			
LC3	Stabil +x	Variabel	LG3	Kurz	Nein
	Standard	Statisch			

4.1.3.1. Einzellast auf Stab


Name	Stab	System	Wert - F [kN]	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
Sta1	ST1	GKS	5,00	0.900	Relativ	1
	LC3 - Stabil +x	X	Kraft		Von Anfang	
Sta2	ST3	GKS	1,50	0.900	Relativ	1
	LC3 - Stabil +x	X	Kraft		Von Anfang	

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion AIXINEERING

06.02.2020 Seite: 25

4.1.3.2. Belastung

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

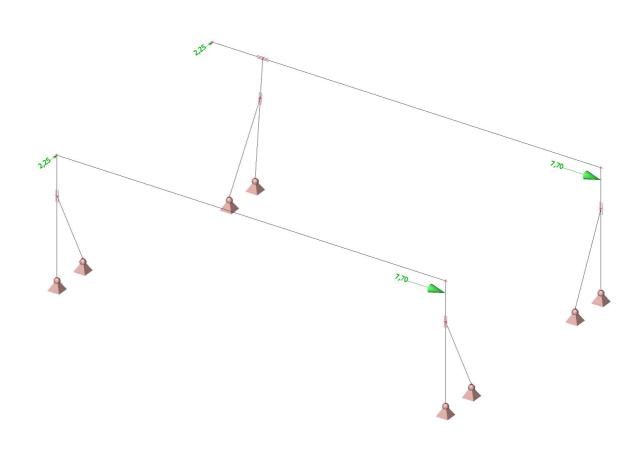
06.02.2020 Seite: 26

4.1.4. Lastfälle - LC4

Name	Beschreibung	Einwirkungstyp	Lastgruppe	Dauer	Vorherrschender Lastfall
	Spez	Lasttyp			
LC4	Stabil -x	Variabel	LG3	Kurz	Nein
	Standard	Statisch			

4.1.4.1. Einzellast auf Stab

Name	Stab	System	Wert - F [kN]	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
Sta3	ST2	GKS	7,70	0.100	Relativ	1
	LC4 - Stabil -x	X	Kraft		Von Anfang	
Sta4	ST4	GKS	7,70	0.100	Relativ	1
	LC4 - Stabil -x	Χ	Kraft		Von Anfang	


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 27

4.1.4.2. Belastung

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

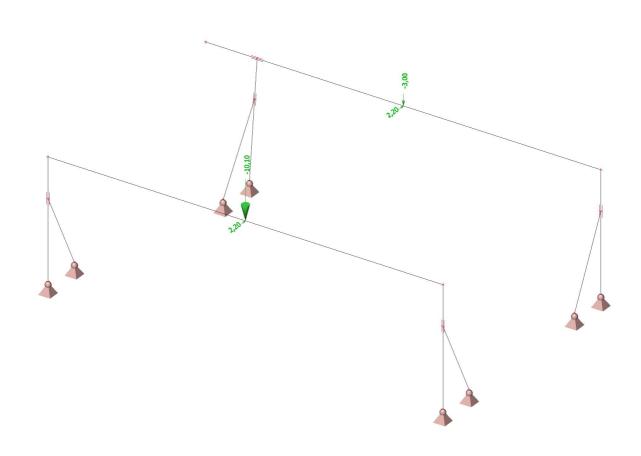
06.02.2020

Seite: 28

4.1.5. Lastfälle - LC5

Name	Beschreibung	Einwirkungstyp	Lastgruppe	Dauer	Vorherrschender Lastfall
	Spez	Lasttyp			
LC5	Hublast HF	Variabel	LG3	Kurz	Nein
	Standard	Statisch			

4.1.5.1. Einzellast auf Stab


Name	Stab	System	Wert - F [kN]	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
F1	Pos 2.2.1	GKS	-10,10	0.500	Relativ	1
	LC5 - Hublast HF	Z	Kraft		Von Anfang	
S1	Pos 2.2.1	GKS	2,20	0.500	Relativ	1
	LC5 - Hublast HF	Υ	Kraft		Von Anfang	
F2	Pos 2.2.2	GKS	-3,00	0.500	Relativ	1
	LC5 - Hublast HF	Z	Kraft		Von Anfang	
S2	Pos 2.2.2	GKS	2,20	0.500	Relativ	1
	LC5 - Hublast HF	Υ	Kraft		Von Anfang	

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren
Position: 2.1 Stahlbau Unterkonstruktion
06.02.2020 Seite: 29

4.1.5.2. Belastung

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

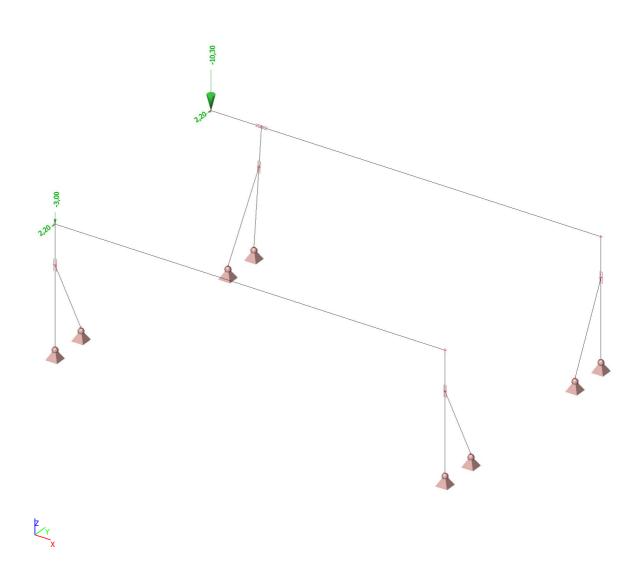
06.02.2020 Seite: 30

4.1.6. Lastfälle - LC6

Name	Beschreibung	Einwirkungstyp	Lastgruppe	Dauer	Vorherrschender Lastfall
	Spez	Lasttyp			
LC6	Hublast EF	Variabel	LG3	Kurz	Nein
	Standard	Statisch			

4.1.6.1. Einzellast auf Stab

Name	Stab	System	Wert - F [kN]	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
F3	Pos 2.2.1	GKS	-3,00	0.000	Relativ	1
	LC6 - Hublast EF	Z	Kraft		Von Anfang	
F4	Pos 2.2.2	GKS	-10,30	0.000	Relativ	1
	LC6 - Hublast EF	Z	Kraft		Von Anfang	
F5	Pos 2.2.1	GKS	2,20	0.000	Relativ	1
	LC6 - Hublast EF	Υ	Kraft		Von Anfang	
F6	Pos 2.2.2	GKS	2,20	0.000	Relativ	1
	LC6 - Hublast EF	Υ	Kraft		Von Anfang	


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 31

4.1.6.2. Belastung

PROJECT: Unterkonstruktion Kranbahnanlage Haaren	PROJECT-NR: 20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 32

4.2. Lastgruppen

Name	Belastung	Status	Тур
LG1	Ständig		
LG2	Variabel	Standard	Kat.E: Lagerräume
LG3	Variabel	Exklusiv	Wind

4.3. Kombinationen

Name	Beschreibung	Тур	Lastfälle	Beiwert [-]
CO1	EN_GZT	EN-GZT (STR/GEO) Satz B	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,00
			LC4 - Stabil -x	1,00
			LC5 - Hublast HF	1,00
			LC6 - Hublast EF	1,00
CO2	EN_GZG	EN-GZG charakteristisch	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,00
			LC4 - Stabil -x	1,00
			LC5 - Hublast HF	1,00
			LC6 - Hublast EF	1,00
CO3		GZT - Umhüllende	LC1 - EG	1,35
			LC2 - ständig	1,35
CO4		GZT - Umhüllende	LC1 - EG	1,00
			LC2 - ständig	1,00
CO5		GZT - Umhüllende	LC1 - EG	1,35
			LC2 - ständig	1,35
			LC3 - Stabil +x	1,50
			LC4 - Stabil -x	1,50
			LC5 - Hublast HF	1,50
			LC6 - Hublast EF	1,50
CO6		GZT - Umhüllende	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,50
			LC4 - Stabil -x	1,50
			LC5 - Hublast HF	1,50
		070	LC6 - Hublast EF	1,50
CO7		GZG - Umhüllende	LC1 - EG	1,00
600		070 11 1 1 1	LC2 - ständig	1,00
CO8		GZG - Umhüllende	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,00
			LC4 - Stabil -x	1,00
			LC5 - Hublast HF	1,00
CO0		CZT lineau	LC6 - Hublast EF	1,00
CO9		GZT - linear	LC1 - EG	1,35
CO10		GZT - linear	LC2 - ständig LC1 - EG	1,35
CO10		GZI - IINEAF		1,00
CO11		C7T linear	LC2 - ständig LC1 - EG	1,00
CO11		GZT - linear		1,35
			LC2 - ständig	1,35

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

Seite: 33

Name	<i>"</i>		Lastfälle	Beiwert [-]
			LC3 - Stabil +x	1,50
CO12		GZT - linear	LC1 - EG	1,35
			LC2 - ständig	1,35
			LC4 - Stabil -x	1,50
CO13		GZT - linear	LC1 - EG	1,35
			LC2 - ständig	1,35
			LC5 - Hublast HF	1,50
CO14		GZT - linear	LC1 - EG	1,35
			LC2 - ständig	1,35
			LC6 - Hublast EF	1,50
CO15		GZT - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,50
CO16		GZT - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC4 - Stabil -x	1,50
CO17		GZT - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC5 - Hublast HF	1,50
CO18		GZT - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC6 - Hublast EF	1,50
CO19		GZG - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
CO20		GZG - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC3 - Stabil +x	1,00
CO21		GZG - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC4 - Stabil -x	1,00
CO22		GZG - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC5 - Hublast HF	1,00
CO23		GZG - linear	LC1 - EG	1,00
			LC2 - ständig	1,00
			LC6 - Hublast EF	1,00

Arnold Damm GmbH	DATE: 06.02.2020
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 34

5. Ergebnisse

5.1. Verformungen

5.1.1. Stabverformungen

Nichtlineare Analyse, Extremwerte : Global, System : Hauptsystem

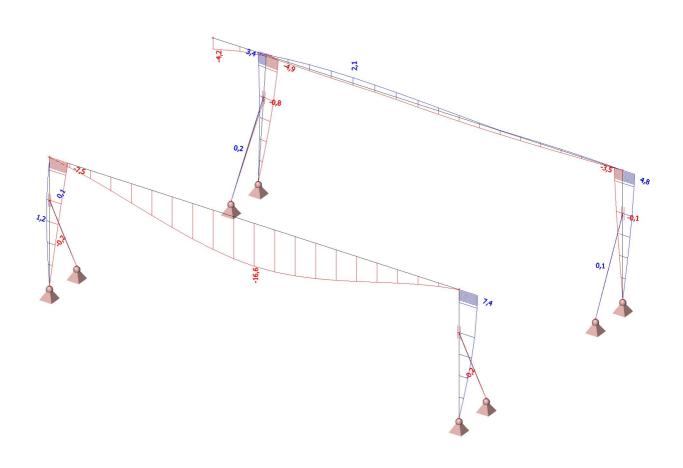
Auswahl: Alle

LFK-Klasse : Alle GZG_NL

Teil	dx [m]	LF	ux [mm]	uy [mm]	uz [mm]	fix [mrad]	fiy [mrad]	fiz [mrad]	Resultierende [mm]
Pos 2.2.2	0,000	NC_CO23	-3,5	4,6	-4,2	-1,3	-3,8	-2,6	7,1
Pos 2.2.1	0,000	NC_CO21	7,5	0,8	0,0	-0,7	2,8	-0,1	7,5
STR3	2,240	NC_CO21	0,1	-3,9	-0,8	-0,6	0,9	-1,6	4,0
Pos 2.2.1	5,000	NC_CO22	0,1	12,9	-16,6	-0,4	0,0	0,0	21,0
ST2	0,000	NC_CO21	0,0	-0,1	7,4	0,1	0,3	0,1	7,4
ST3	3,006	NC_CO21	-0,1	0,6	-4,9	-2,3	0,4	1,1	4,9
ST2	0,048	NC_CO22	0,3	0,8	0,2	3,9	-2,0	-0,4	0,9
Pos 2.2.1	8,000	NC_CO22	0,1	7,5	-7,4	-0,4	-4,4	-3,2	10,6
Pos 2.2.1	2,000	NC_CO22	0,2	7,5	-7,5	-0,4	4,4	3,2	10,6
Pos 2.2.1	10,000	NC_CO22	0,1	0,4	0,0	-0,4	-2,0	-3,8	0,4
Pos 2.2.1	0,000	NC_CO22	0,2	0,4	0,0	-0,4	2,1	3,8	0,4

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

B-4710 Herbesthal Tel.: +49 173 640 4273


Position: 2.1 Stahlbau Unterkonstruktion URL: aixineering.de

AIXINEERING

06.02.2020 Seite: 35

Unterkonstruktion Kranbahnanlage Haaren

5.1.2. Stabverformungen in Z-Richtung

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 36

5.2. Schnittgrößen

5.2.1. Stabschnittgrößen

Nichtlineare Analyse, Extremwerte : Querschnitt, System : LKS

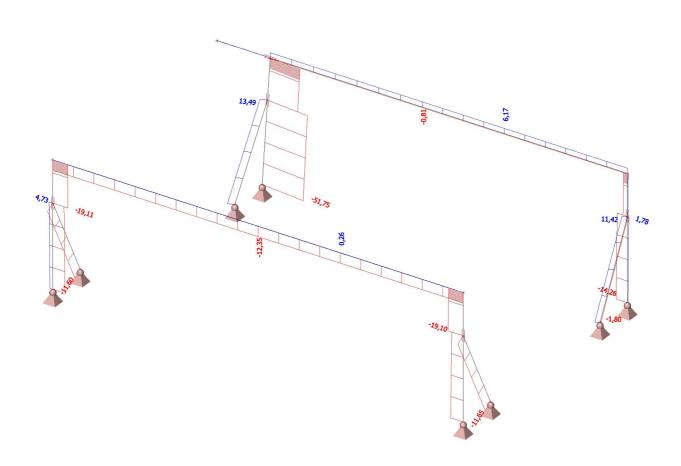
Auswahl: Alle

LFK-Klasse : Alle GZT_NL

Teil	CSS	dx	LF	N	Vy	Vz	Mx	Му	Mz
		[m]		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
ST3	HEA-VOUTE - I + I,var	0,000	NC_CO14	-51,75	3,13	6,55	0,00	0,00	0,00
ST1	HEA-VOUTE - I + I,var	2,000	NC_CO16	4,73	1,61	0,31	0,01	0,62	3,22
ST3	HEA-VOUTE - I + I,var	3,006	NC_CO14	-37,42	-4,65	4,71	0,60	21,59	1,12
ST4	HEA-VOUTE - I + I,var	0,000	NC_CO11	-1,82	3,64	-0,06	-0,43	-0,37	0,00
ST1	HEA-VOUTE - I + I,var	0,000	NC_CO13	-15,35	1,13	-12,36	0,00	0,00	0,00
ST2	HEA-VOUTE - I + I,var	3,000	NC_CO12	-15,89	0,21	13,51	0,00	0,00	0,00
ST4	HEA-VOUTE - I + I,var	0,048	NC_CO11	-1,88	3,63	-0,05	-0,43	-0,38	0,17
ST2	HEA-VOUTE - I + I,var	0,240	NC_CO12	-14,20	-0,19	1,38	0,07	-35,92	-0,03
ST3	HEA-VOUTE - I + I,var	3,006	NC_CO12	-16,35	-4,08	7,00	0,54	24,50	1,52
ST4	HEA-VOUTE - I + I,var	1,000	NC_CO12	-4,12	0,22	5,33	0,00	-10,80	-0,56
ST3	HEA-VOUTE - I + I,var	2,004	NC_CO14	-38,18	-3,95	5,47	-0,01	11,65	5,48
Pos 2.2.1	Riegel HEA - HEA220	5,000	NC_CO13	-12,35	-1,66	14,94	0,00	47,23	-9,14
Pos 2.2.2	Riegel HEA - HEA220	7,000	NC_CO12	6,17	-0,51	-2,68	-0,01	-1,73	1,42
Pos 2.2.1	Riegel HEA - HEA220	0,000	NC_CO13	-12,28	-1,98	18,56	-0,21	-36,72	0,00
Pos 2.2.2	Riegel HEA - HEA220	1,294	NC_CO12	0,00	3,40	-15,71	0,07	-19,77	4,40
Pos 2.2.2	Riegel HEA - HEA220	1,294	NC_CO14	0,11	3,36	-31,16	0,12	-39,76	4,35
Pos 2.2.1	Riegel HEA - HEA220	10,000	NC_CO13	-12,28	1,98	-18,68	0,21	-37,32	0,00
Pos 2.2.2	Riegel HEA - HEA220	1,294	NC_CO12	6,17	-0,54	1,13	-0,01	2,68	4,42
STR2	QRO100x4 - QRO100X4	0,000	NC_CO11	-11,65	-0,30	0,40	0,00	0,00	0,00
STR3	QRO100x4 - QRO100X4	2,240	NC_CO14	13,49	0,06	-0,35	0,00	-0,58	0,12
STR2	QRO100x4 - QRO100X4	0,000	NC_CO13	-6,00	-0,31	0,24	0,00	0,00	0,00
STR1	QRO100x4 - QRO100X4	0,000	NC_CO13	-6,00	0,31	0,24	0,00	0,00	0,00
STR3	QRO100x4 - QRO100X4	2,240	NC_CO12	13,48	0,05	-0,34	0,00	-0,55	0,12
STR2	QRO100x4 - QRO100X4	1,677	NC_CO11	-11,42	0,04	-0,07	0,00	0,28	-0,22
STR2	QRO100x4 - QRO100X4	2,236	NC_CO13	-5,68	-0,09	-0,14	0,00	0,11	-0,44
STR1	QRO100x4 - QRO100X4	2,236	NC_CO13	-5,68	0,09	-0,14	0,00	0,10	0,45

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

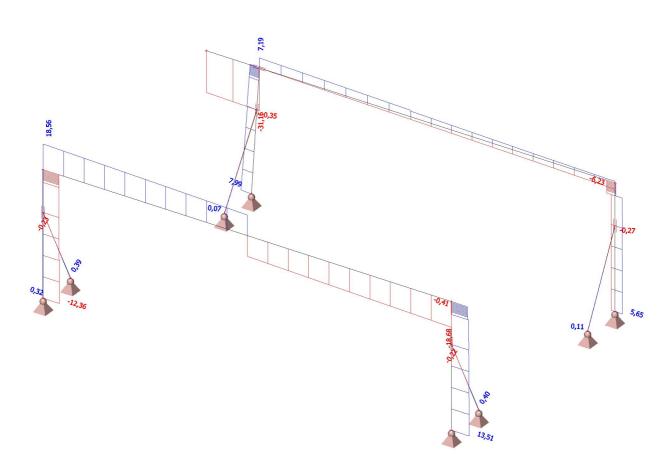
B-4710 Herbesthal Tel.: +49 173 640 4273


URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 37

5.2.2. Stabschnittgrößen: N


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

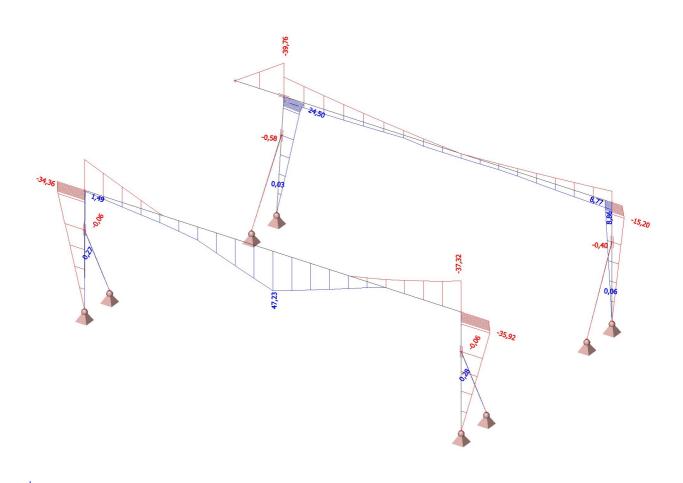
Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

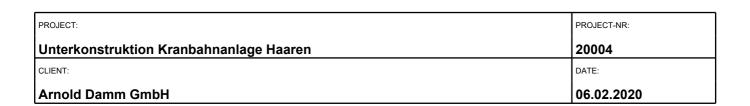
06.02.2020 Seite: 38

5.2.3. Stabschnittgrößen: Vz

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710 Herbesthal Tel.: +49 173 640 4273


URL: aixineering.de


Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 39

5.2.4. Stabschnittgrößen: My

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 40

5.3. Nachweise gemäß EC

5.3.1. EC-EN 1993 Stahlnachweis GZT

Nichtlineare Analyse LFK-Klasse: Alle GZT_NL Koordinatensystem: Hauptsystem Extremwerte 1D: Bauteil

Auswahl: Alle

Allgemeiner Einheitsnachweis

Name	dx [m]	LF	Querschnitt	Material	UC _{Overall}	UC _{Sec} [-]	UC _{Stab}
ST1	2,760-	NC_CO13	HEA-VOUTE - I + I,var	S 235	0,33	0,25	0,33
ST2	0,240+	NC_CO13	HEA-VOUTE - I + I,var	S 235	0,34	0,26	0,34
Pos 2.2.1	5,000-	NC_CO13	Riegel HEA - HEA220	S 235	0,58	0,35	0,58
STR1	0,000	NC_CO14	QRO100x4 - QRO100X4	S 235	0,09	0,03	0,09
STR2	0,000	NC_CO11	QRO100x4 - QRO100X4	S 235	0,10	0,03	0,10
ST3	2,004-	NC_CO14	HEA-VOUTE - I + I,var	S 235	0,31	0,09	0,31
ST4	0,300-	NC_CO16	HEA-VOUTE - I + I,var	S 235	0,12	0,11	0,12
Pos 2.2.2	1,294-	NC_CO14	Riegel HEA - HEA220	S 235	0,45	0,30	0,45
STR3	2,240	NC_CO14	QRO100x4 - QRO100X4	S 235	0,04	0,04	0,00
STR4	2,236	NC_CO11	QRO100x4 - QRO100X4	S 235	0,03	0,03	0,00

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

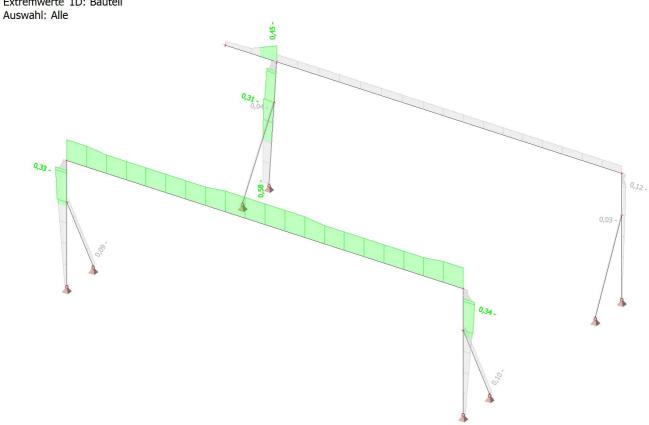
Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

Seite: 41



5.3.2. Auslastung gemäß EC3

Werte: **UCoverall** Nichtlineare Analyse LFK-Klasse: Alle GZT_NL

Koordinatensystem: Hauptsystem

Extremwerte 1D: Bauteil

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 42

5.3.3. EC-EN 1993 Stahlnachweis GZT

Nichtlineare Analyse LFK-Klasse: Alle GZT_NL Koordinatensystem: Hauptsystem Extremwerte 1D: Querschnitt

Auswahl: Alle

Normnachweis EN 1993-1-1 Nationaler Anhang: Standard EN

Teil ST2	0,240 / 3,000 m	HEA220	S 235	Alle GZT_NL	0,34 -
		(HEA220; 200;			
		0; 10; 12)			

Kombinationsvorschrift Alle GZT_NL / NC_CO13

Teilsicherheitsbeiwerte		
γ _{M0} für die Beanspruchbarkeit	der Querschnitte	1,00
γ _{M1} für die Beanspruchbarkeit	bei Stabilitätsversagen	1,00
γ _{M2} für die Beanspruchbarkeit	der wirksamen Querschnitte	1,25

Material		
Streckgrenze fy	235,0	MPa
Zugfestigkeit f _u	360,0	MPa
Herstellung	Gewalzt	

..::QUERSCHNITTSNACHWEIS::...

Der kritische Nachweis ist an Position 0,240 m

Schnittgrößen	Ermittelt	[Dim]
N_{Ed}	-18,62	kN
$V_{y,Ed}$	2,06	kN
$V_{z,Ed}$	12,13	kN
T _{Ed}	0,22	kNm
$M_{y,Ed}$	-34,43	kNm
$M_{z,Ed}$	0,31	kNm

Klassifizierung für den Querschnittsnachweis

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von internen und überstehenden Teilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 1 und 2

Id	Тур	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	a [-]	c/t [-]		Klasse 2 Grenze [-]	Klasse 3 Grenze [-]	LFK-Klasse
1	SO	89	11	6,587e+04	6,449e+04	0,98	0,44	1,00	8,05	9,00	10,00	13,90	1
3	SO	89	11	6,654e+04	6,793e+04	0,98	0,43	1,00	8,05	9,00	10,00	13,79	1
4	I	152	7	5,125e+04	-4,547e+04	-0,89		0,54	21,71	66,18	76,20	111,33	1
5	SO	89	11	-6,009e+04	-5,870e+04								
7	SO	89	11	-6,076e+04	-6,214e+04								

Der Querschnitt ist als Klasse 1 klassifiziert

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 43

Querschnitts-Eigenschaften								
Α	6,4300e-03 m ²							
A _y /A	0,72	A _z /A	0,24					
I{y}	5,4100e-05 m ⁴	I{z}	1,9600e-05 m ⁴					
I _{yz}	1,3553e-20 m ⁴	It	2,8500e-07 m ⁴					
Iw	1,9327e-07 m ⁶							
W _{el,y}	5,1500e-04 m ³	W _{el,z}	1,7800e-04 m ³					
$W_{pl,y}$	5,6667e-04 m ³	W _{pl,z}	2,7042e-04 m ³					
Су	110 mm	Cz	105 mm					
d _v	0 mm	dz	0 mm					

Nachweis bei Druckbeanspruchung

Gemäß EN 1993-1-1 §§6.2.4 und Formel (6.9)

Α	6,4300e-03	m ²
N _{c,Rd}	1511,05	kN
Einheitsnachweis	0,01	-

Nachweis bei Biegebeanspruchung My

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

W _{pl,y}	5,6667e-04	m ³
M _{pl,y,Rd}	133,17	kNm
Einheitsnachweis	0,26	-

Nachweis bei Biegebeanspruchung Mz

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

W _{pl,z}	2,7042e-04	m^3
$M_{pl,z,Rd}$	63,55	kNm
Einheitsnachweis	0,00	-

Nachweis bei Querkraftbeanspruchung Vy

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
A _v	5,0150e-03	m ²
V _{pl,y,Rd}	680,42	kN
Finheitsnachweis	0.00	-

Nachweis bei Querkraftbeanspruchung Vz

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
Av	2,0630e-03	m ²
V _{pl,z,Rd}	279,90	kN
Einheitsnachweis	0,04	-

Nachweis bei Torsionbeanspruchung

Gemäß EN 1993-1-1 §6.2.7 und Formel (6.23)

Faser	2	
T _{Ed}	8,4	MPa
TRd	135,7	MPa
Finheitsnachweis	0.06	-

Nachweis der zusammengesetzten Beanspruchung durch Schub und Torsion für V_y und $\tau_{t,Ed}$

Gemäß EN 1993-1-1 §6.2.6 & 6.2.7 und Formel (6.25),(6.26)

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 44

$V_{pl,T,y,Rd}$	663,28	kN
Einheitsnachweis	0,00	-

Nachweis der zusammengesetzten Beanspruchung durch Schub und Torsion für V_z und $\tau_{t,Ed}$ Gemäß EN 1993-1-1 §6.2.6 & 6.2.7 und Formel (6.25),(6.26)

V _{pl,T,z,Rd}	272,85	kN
Einheitsnachweis	0.04	-

Kombinierter Nachweis bei Beanspruchung auf Biegung, Normalkraft und Querkraft

Gemäß EN 1993-1-1 §6.2.9.1 und Formel (§6.41)

M _{pl,y,Rd}	133,17	kNm
Α	2,00	
M _{pl,z,Rd}	63,55	kNm
β	1,00	

Einheitsnachweis ($\S6.41$) = 0,07 + 0,00 = 0,07 -

Bemerkung: Der Einfluss der Querkräfte auf den Biegewiderstand wird vernachlässigt, weil diese kleiner als der halbe plastische Schubwiderstand sind.

Bemerkung: Da die Normalkraft beiden Kriterien (6.33) und (6.34) EN 1993-1-1 Abschnitt 6.2.9.1(4)

erfüllt, wird deren Einfluss auf den Biegewiderstand um die y-y Achse nicht berücksichtigt. **Bemerkung:** Da die Normalkraft das Kriterium (6.35) EN 1993-1-1 Abschnitt 6.2.9.1(4) erfüllt, wird deren Einfluss auf den Biegewiderstand um die z-z Achse nicht berücksichtigt.

Der Querschnittsnachweis für das Teil wurde erbracht.

..::STABILITÄTSNACHWEIS::...

Klassifizierung für den Biegeknicknachweis

Bemerkung: Die Querschnittsklassifizierung für diesen Querschnitt wird auch für den Biegeknicknachweis angewendet. => Querschnitt wird als Klasse 1 für den Knicknachweis klassifiziert

Biegeknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Knickparameter	уу	zz	
Verschieblichkeitstyp	Verschieblichkeit	unverschieblich	
Systemlänge L	3,000	3,000	m
Knickbeiwert k	6,38	1,00	
Knicklänge L _{cr}	19,151	3,000	m
Ideale Verzweigungslast N _{cr}	305,71	4513,92	kN
Schlankheit λ	208,79	54,34	
Relative Schlankheit λ _{rel}	2,22	0,58	
Grenzschlankheit λ _{rel,0}	0,20	0,20	
Knickfigur	b	С	
Imperfektion A	0,34	0,49	
Reduktionsbeiwert x	0,17	0,80	
Knickwiderstand N _{b,Rd}	261,67	1205,83	kN

Kontrolle des Biegeknickens		
Querschnittsfläche A 6,4300e-03 m ²		
Knickwiderstand N _{b,Rd} 261,67		kN
Einheitsnachweis	0,07	-

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18

Tel.: +49 173 640 4273

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

B-4710 Herbesthal URL: aixineering.de 06.02.2020 Seite: 45

Bemerkung: Für dieses I-Profil ist der Widerstand gegen Drillknicken höher als der Widerstand gegen Biegeknicken. Die Ausgabe enthält daher keine Angaben zum Drillknicken.

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.2.1 und 6.3.2.3 und Formel (6.54)

BDK-Parameter		
Verfahren für BDK-Diagramm	Alternativer Fall	
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³
Elastisches kritisches Moment M _{cr}	902,27	kNm
Relative Schlankheit λ _{rel,LT}	0,38	
Grenzschlankheit λ _{rel,LT,0}	0,40	

Bemerkung: Die Schlankheit bzw. die Größe des Biegemoments erlauben die Vernachlässigung der BDK-Einflüsse gemäß EN 1993-1-1 §6.3.2.2(4)

Parameter Mcr		
BDK-Länge L	3,000	m
Einfluss der Lastposition	kein Einfluss	
Korrekturbeiwert k	1,00	
Korrekturbeiwert kw	1,00	
BDK-Momentenbeiwert C ₁	1,63	
BDK-Momentenbeiwert C ₂	0,04	
BDK-Momentenbeiwert C ₃	1,00	
Schubmittelabstand dz	0	mm
Abstand der Lastanwendung zg	0	mm
Einfachsymmetrie-Konstante β _y	0	mm
Einfachsymmetrie-Konstante z _j	0	mm

Bemerkung: C-Parameter werden gemäß ECCS 119 2006 / Galea 2002 ermittelt.

Nachweis der Biege- und Drucknormalkraftspannungen

Gemäß EN 1993-1-1 §§6.3.3 und Formel (6.61),(6.62)

Parameter für den Nachweis der Biege- und			
Drucknormalkraftspannungen			
Interaktionsverfahren	Alternatives Verfahren 1		
Querschnittsfläche A	6,4300e-03	m ²	
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³	
Plastischer Querschnittsmodul W _{pl,z}	2,7042e-04	m ³	
Bemessungsdruckkraft N _{Ed}	18,62	kN	
Bemessungsbiegemoment M _{y,Ed}	-34,43	kNm	
Bemessungsbiegemoment M _{z,Ed}	0,31	kNm	
Charakteristischer Widerstand bei	1511,05	kN	
Druckbeanspruchung N _{Rk}			
Charakteristischer Momentwiderstand	133,17	kNm	
$M_{y,Rk}$			
Charakteristischer Momentwiderstand	63,55	kNm	
$M_{z,Rk}$			
Reduktionsbeiwert χ_y	0,17		
Reduktionsbeiwert χ_z	0,80		
Modifizierter Reduktionsbeiwert XLT,mod	1,00		
Interaktionsbeiwert k _{yy}	1,02		
Interaktionsbeiwert k _{yz}	0,75		
Interaktionsbeiwert k _{zy}	0,57		
Interaktionsbeiwert kzz	1,06		

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020

Bemerkung: Dieses Teil ist nicht prismatisch. Daher werden die aktuellen Momente im Querschnitt anstelle der maximalen Momente verwendet.

Für $C_{my,0}$ der Höchstwert des Biegemomentes $M_{y,Ed}$ wurde vom Stab ST2 Position 0,000 m ermittelt. Für $C_{mz,0}$ der Höchstwert des Biegemomentes $M_{z,Ed}$ wurde vom Stab ST2 Position 1,000 m ermittelt.

Parameter für Interaktionsverfahre	en 1	
Ideale Verzweigungslast N _{cr,y}	305,71	kN
Ideale Verzweigungslast N _{cr,z}	4513,92	kN
Elastische kritische Last N _{cr.T}	5891,40	kN
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³
Elastischer Querschnittsmodul Wel,y	5,1500e-04	m ³
Plastischer Querschnittsmodul W _{pl,z}	2,7042e-04	m ³
Elastischer Querschnittsmodul W _{el,z}	1,7800e-04	m ³
Flächenträgheitsmoment I{y}	5,4100e-05	m ⁴
Flächenträgheitsmoment I{z}	1,9600e-05	m ⁴
Torsionskonstante It	2,8500e-07	m ⁴
Verfahren für äquivalenten	Tabelle A.2 Linie 2 (allgemein)	1
Momentbeiwert C _{mv.0}	rabelle 7112 Ellie E (dilgellielli)	
Bemessungsbiegemoment (maximal)	-34.96	kNm
M _{y,Ed}	31,30	Kitiii
Maximale relative Durchbiegung δ _z	1,8	mm
Äquivalenter Momentbeiwert C _{my,0}	0,98	
Verfahren für äquivalenten	Tabelle A.2 Linie 2 (allgemein)	
Momentbeiwert C _{mz,0}	rubelle 74.2 Ellile 2 (dilgerielli)	
Bemessungsbiegemoment (maximal)	1,93	kNm
M _{z.Ed}	1,55	KINIII
Maximale relative Durchbiegung δ _y	1,3	mm
Äquivalenter Momentbeiwert C _{mz,0}	1,01	1111111
Beiwert µ _y	0,95	+
Beiwert µ _z	1,00	
Beiwert Ey	23,09	
	0,99	+
Beiwert a _{LT} Kritisches Moment für konstantes	552,08	kNm
	332,00	KINIII
Biegen M _{cr,0} Relative Schlankheit λ _{rel,0}	0.40	
Relative Schlankheitsgrenze $\lambda_{\text{rel},0,\text{lim}}$	0,49	
	0,26	+
Äquivalenter Momentbeiwert C _{my}	1,00	
Äquivalenter Momentbeiwert C _{mz}	1,01	
Äquivalenter Momentbeiwert C _{mLT}	1,00	
Beiwert b _{LT}	0,00	
Beiwert CLT	0,12	+
Beiwert d _{LT}	0,01	1
Beiwert e _{LT}	1,02	
Beiwert wy	1,10	
Beiwert w _z	1,50	
Beiwert n _{pl}	0,01	
Maximale relative Schlankheit $\lambda_{rel,max}$	2,22	
Beiwert C _{yy}	0,99	
Beiwert Cyz	0,89	
Beiwert C _{yz} Beiwert C _{zy} Beiwert C _{7z}		

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18

Tel.: +49 173 640 4273

Position: 2.1 Stahlbau Unterkonstruktion

Unterkonstruktion Kranbahnanlage Haaren

B-4710 Herbesthal URL: aixineering.de 06.02.2020

Einheitsnachweis (6.61) = 0.07 + 0.26 + 0.00 = 0.34Einheitsnachweis (6.62) = 0.02 + 0.15 + 0.01 = 0.17 -

Schubbeulnachweis

Gemäß EN 1993-1-5 §5 & 7.1 und Formel (5.10) & (7.1)

Schubbeulparameter		
Beulfeldlänge a	3,000	m
Web	nicht ausgesteift	
Steghöhe h _w	188	mm
Stegdicke t	7	mm
Materialbeiwert ε	1,00	
Korrekturbeiwert für Schub η	1,20	

Kontrolle des Schubbeulens		
Stegschlankheit h _w /t 26,86		
Grenzschlankheit des Steges	60,00	

Bemerkung: Ein Schubbeulnachweis gemäß EN 1993-1-5 Kapitel 5.1(2)

ist wegen der Schlankheit des Flansches nicht erforderlich

Der Stabilitätsnachweis wurde für dieses Teil erbracht

Normnachweis EN 1993-1-1 Nationaler Anhang: Standard EN

Teil Pos 2.2.1	5,000 / 10,000	HEA220	S 235	Alle GZT_NL	0,58 -
	m				

Kombinationsvorschrift Alle GZT_NL / NC_CO13

Teilsicherheitsbeiwerte	
γ _{M0} für die Beanspruchbarkeit der Querschnitte	1,00
үмı für die Beanspruchbarkeit bei Stabilitätsversagen	1,00
YM2 für die Beanspruchbarkeit der wirksamen Querschnitte	1,25

Material		
Streckgrenze fy	235,0	MPa
Zugfestigkeit f _u	360,0	MPa
Herstellung	Gewalzt	

...::QUERSCHNITTSNACHWEIS::...

Der kritische Nachweis ist an Position 5,000 m

Schnittgrößen	Ermittelt	[Dim]
N _{Ed}	-12,35	kN
$V_{y,Ed}$	-1,66	kN
$V_{z,Ed}$	14,94	kN
T _{Ed}	0,00	kNm
$M_{y,Ed}$	47,23	kNm
$M_{z,Ed}$	-9,14	kNm

Klassifizierung für den Querschnittsnachweis

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von internen und überstehenden Teilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 1 und 2

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 48

Id	Тур	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	k _σ [-]	a [-]	c/t [-]			Klasse 3 Grenze [-]	LFK-Klasse
1	SO	89	11	-7,488e+04	-3,349e+04								
3	SO	89	11	-9,499e+04	-1,364e+05								
4	I	152	7	-6,442e+04	6,826e+04	-0,94		0,52	21,71	68,03	78,34	117,14	1
5	SO	89	11	7,871e+04	3,733e+04	0,47	0,71	1,00	8,05	9,00	10,00	17,69	1
7	SO	89	11	9,882e+04	1,402e+05	0,70	0,46	1,00	8,05	9,00	10,00	14,19	1

Der Querschnitt ist als Klasse 1 klassifiziert

Nachweis bei Druckbeanspruchung

Gemäß EN 1993-1-1 §§6.2.4 und Formel (6.9)

Α	6,4300e-03	m ²
N _{c,Rd}	1511,05	kN
Einheitsnachweis	0,01	-

Nachweis bei Biegebeanspruchung My

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

W _{pl,y}	5,6667e-04	m ³
M _{pl,y,Rd}	133,17	kNm
Einheitsnachweis	0,35	-

Nachweis bei Biegebeanspruchung Mz

Gemäß EN 1993-1-1 §6.2.5 und Formel (6.12),(6.13)

W _{pl,z}	2,7042e-04	m ³
$M_{pl,z,Rd}$	63,55	kNm
Einheitsnachweis	0,14	-

Nachweis bei Querkraftbeanspruchung Vy

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
A _v	5,0150e-03	m ²
$V_{pl,y,Rd}$	680,42	kN
Einheitsnachweis	0,00	-

Nachweis bei Querkraftbeanspruchung Vz

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
A _v	2,0630e-03	m ²
$V_{pl,z,Rd}$	279,90	kN
Finheitsnachweis	0.05	-

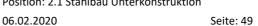
Nachweis bei Torsionbeanspruchung

Gemäß EN 1993-1-1 §6.2.7 und Formel (6.23)

Faser	2	
T _{Ed}	0,0	MPa
T _{Rd}	135,7	MPa
Einheitsnachweis	0,00	-

Bemerkung: Der Nachweiswert für Torsion ist kleiner als der Grenzwert 0,05. Deswegen wird die Torsion als nicht relevant betrachtet und wird in den kombinierten Nachweisen ignoriert.

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020


B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

Kombinierter Nachweis bei Beanspruchung auf Biegung, Normalkraft und Querkraft

Gemäß EN 1993-1-1 §6.2.9.1 und Formel (§6.41)

$M_{pl,y,Rd}$	133,17	kNm
Α	2,00	
$M_{pl,z,Rd}$	63,55	kNm
β	1,00	

Einheitsnachweis ($\S6.41$) = 0,13 + 0,14 = 0,27 -

Bemerkung: Der Einfluss der Querkräfte auf den Biegewiderstand wird vernachlässigt, weil diese kleiner als der halbe plastische Schubwiderstand sind.

Bemerkung: Da die Normalkraft beiden Kriterien (6.33) und (6.34) EN 1993-1-1 Abschnitt 6.2.9.1(4)

erfüllt, wird deren Einfluss auf den Biegewiderstand um die y-y Achse nicht berücksichtigt. **Bemerkung:** Da die Normalkraft das Kriterium (6.35) EN 1993-1-1 Abschnitt 6.2.9.1(4) erfüllt, wird deren Einfluss auf den Biegewiderstand um die z-z Achse nicht berücksichtigt.

Der Querschnittsnachweis für das Teil wurde erbracht.

...:STABILITÄTSNACHWEIS::...

Klassifizierung für den Biegeknicknachweis

Maßgebender Schnitt für die Stabilitätsklassifizierung: 5,000 m

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von internen und überstehenden Teilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 1 und 2

Id	Тур	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	a [-]	c/t [-]			Klasse 3 Grenze [-]	LFK-Klasse
1	SO	89	11	-7,488e+04	-3,349e+04								
3	SO	89	11	-9,499e+04	-1,364e+05								
4	I	152	7	-6,442e+04	6,826e+04	-0,94		0,52	21,71	68,03	78,34	117,14	1
5	SO	89	11	7,871e+04	3,733e+04	0,47	0,71	1,00	8,05	9,00	10,00	17,69	1
7	SO	89	11	9.882e+04	1.402e+05	0,70	0,46	1,00	8.05	9.00	10,00	14.19	1

Der Querschnitt ist als Klasse 1 klassifiziert

Biegeknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Knickparameter	уу	zz	
Verschieblichkeitstyp	Verschieblichkeit	unverschieblich	
Systemlänge L	10,000	10,000	m
Knickbeiwert k	1,35	0,70	
Knicklänge L _{cr}	13,533	6,954	m
Ideale Verzweigungslast N _{cr}	612,23	839,97	kN
Schlankheit λ	147,54	125,96	
Relative Schlankheit λ _{rel}	1,57	1,34	
Grenzschlankheit λ _{rel,0}	0,20	0,20	

Bemerkung: Die Schlankheit oder Normalkraft sind so beschaffen, dass der Biegeknicknachweis nach EN 1993-1-1 Abschnitt 6.3.1.2(4) entfallen kann.

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Bemerkung: Für dieses I-Profil ist der Widerstand gegen Drillknicken höher als der Widerstand gegen Biegeknicken. Die Ausgabe enthält daher keine Angaben zum Drillknicken.

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 50

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.2.1 und 6.3.2.3 und Formel (6.54)

BDK-Parameter		
Verfahren für BDK-Diagramm	Alternativer Fall	
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³
Elastisches kritisches Moment M _{cr}	170,70	kNm
Relative Schlankheit λ _{rel,LT}	0,88	
Grenzschlankheit λ _{rel,LT,0}	0,40	
BDK-Diagramm	b	
Imperfektion a _{LT}	0,34	
BDK-Beiwert β	0,75	
Reduktionsbeiwert XLT	0,77	
Korrekturbeiwert kc	0,78	
Korrekturbeiwert f	0,89	
Modifizierter Reduktionsbeiwert XLT,mod	0,86	
Bemessungs-Biegeknickwiderstand	114,77	kNm
$M_{b,Rd}$		
Einheitsnachweis	0,41	-

Parameter Mcr		
BDK-Länge L	10,000	m
Einfluss der Lastposition	kein Einfluss	
Korrekturbeiwert k	1,00	
Korrekturbeiwert kw	1,00	
BDK-Momentenbeiwert C ₁	1,63	
BDK-Momentenbeiwert C ₂	1,42	
BDK-Momentenbeiwert C ₃	0,41	
Schubmittelabstand dz	0	mm
Abstand der Lastanwendung zg	0	mm
Einfachsymmetrie-Konstante β _y	0	mm
Einfachsymmetrie-Konstante z _j	0	mm

Bemerkung: C-Parameter werden gemäß ECCS 119 2006 / Galea 2002 ermittelt.

Bemerkung: Der Korrekturbeiwert k_c wird aus C_1 ermittelt.

Nachweis der Biege- und Drucknormalkraftspannungen

Gemäß EN 1993-1-1 §§6.3.3 und Formel (6.61),(6.62)

Parameter für den Nachweis der Bi	ege- und	
Drucknormalkraftspannungen		
Interaktionsverfahren	Alternatives Verfahren 1	
Querschnittsfläche A	6,4300e-03	m ²
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³
Plastischer Querschnittsmodul W _{pl,z}	2,7042e-04	m ³
Bemessungsdruckkraft N _{Ed}	12,35	kN
Bemessungsbiegemoment (maximal)	47,23	kNm
$M_{y,Ed}$		
Bemessungsbiegemoment (maximal)	-9,14	kNm
$M_{z,Ed}$		
Charakteristischer Widerstand bei	1511,05	kN
Druckbeanspruchung N _{Rk}		
Charakteristischer Momentwiderstand	133,17	kNm
M _{y,Rk}		
Charakteristischer Momentwiderstand	63,55	kNm

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 51

Parameter für den Nachweis der Biege- und Drucknormalkraftspannungen		
$M_{z,Rk}$		
Reduktionsbeiwert X _y	1,00	
Reduktionsbeiwert Xz	1,00	
Modifizierter Reduktionsbeiwert XLT,mod	0,86	
Interaktionsbeiwert k _{yy}	1,03	
Interaktionsbeiwert k _{yz}	1,05	
Interaktionsbeiwert k _{zy}	0,54	
Interaktionsbeiwert k _{zz}	1,02	

 $\begin{array}{lll} \mbox{Maximales} & \mbox{Moment} & \mbox{M}_{\mbox{\scriptsize My,Ed}} & \mbox{ist von Tr\"{a}ger} & \mbox{Pos 2.2.1 Position} & \mbox{5,000 m abgeleitet.} \\ \mbox{Maximales} & \mbox{Moment} & \mbox{M}_{\mbox{\scriptsize M},\mbox{\scriptsize Ed}} & \mbox{ist von Tr\"{a}ger} & \mbox{Pos 2.2.1 Position} & \mbox{5,000 m abgeleitet.} \\ \end{array}$

Parameter für Interaktionsverfahr		1
Ideale Verzweigungslast N _{cr,y}	612,23	kN
Ideale Verzweigungslast N _{cr,z}	839,97	kN
Elastische kritische Last N _{cr,T}	2357,80	kN
Plastischer Querschnittsmodul W _{pl,y}	5,6667e-04	m ³
Elastischer Querschnittsmodul W _{el,y}	5,1500e-04	m ³
Plastischer Querschnittsmodul W _{pl,z}	2,7042e-04	m ³
Elastischer Querschnittsmodul Wel,z	1,7800e-04	m ³
Flächenträgheitsmoment I{y}	5,4100e-05	m ⁴
Flächenträgheitsmoment I{z}	1,9600e-05	m ⁴
Torsionskonstante I _t	2,8500e-07	m ⁴
Verfahren für äquivalenten Momentbeiwert C _{my,0}	Tabelle A.2 Linie 2 (allgemein)	
Bemessungsbiegemoment (maximal) M _{v,Ed}	47,23	kNm
Maximale relative Durchbiegung δ_z	-23,4	mm
Äquivalenter Momentbeiwert C _{my,0}	0,99	
Verfahren für äguivalenten	Tabelle A.2 Linie 2 (allgemein)	
Momentbeiwert C _{mz,0}	(3 ,	
Bemessungsbiegemoment (maximal)	-9,14	kNm
$M_{z,Ed}$ Maximale relative Durchbiegung δ_v	18.0	mm
	18,9	mm
Äquivalenter Momentbeiwert C _{mz,0}	1,00	
Beiwert µ _y	1,00	
Beiwert µz	1,00	
Beiwert ε _y	47,76	
Beiwert a _{LT}	0,99	
Kritisches Moment für konstantes Biegen M _{cr,0}	104,78	kNm
Relative Schlankheit λ _{rel,0}	1,13	
Relative Schlankheitsgrenze λ _{rel,0,lim}	0,25	
Äguivalenter Momentbeiwert C _{my}	1,00	
Äquivalenter Momentbeiwert C _{mz}	1,00	
Äquivalenter Momentbeiwert C _{mLT}	1,00	
Beiwert b _{LT}	0,04	
Beiwert CLT	0,63	
Beiwert d _{LT}	0,04	
Beiwert elt	0,24	
Beiwert wy	1,10	
Beiwert W ₂	1,50	+

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 52

Parameter für Interaktionsverfahren 1		
Beiwert n _{pl}	0,01	
Maximale relative Schlankheit $\lambda_{rel,max}$	1,57	
Beiwert C _{yy}	0,99	
Beiwert C _{yz}	0,67	
Beiwert Czy	0,98	
Beiwert C _{zz}	0,99	

Einheitsnachweis (6.61) = 0.01 + 0.42 + 0.15 = 0.58 -Einheitsnachweis (6.62) = 0.01 + 0.22 + 0.15 = 0.38 -

Schubbeulnachweis

Gemäß EN 1993-1-5 §5 & 7.1 und Formel (5.10) & (7.1)

Schubbeulparameter		
Beulfeldlänge a	10,000	m
Web	nicht ausgesteift	
Steghöhe hw	188	mm
Stegdicke t	7	mm
Materialbeiwert ε	1,00	
Korrekturbeiwert für Schub η	1,20	

Kontrolle des Schubbeulens		
Stegschlankheit h _w /t 26,86		
Grenzschlankheit des Steges	60,00	

Bemerkung: Ein Schubbeulnachweis gemäß EN 1993-1-5 Kapitel 5.1(2)

ist wegen der Schlankheit des Flansches nicht erforderlich

Der Stabilitätsnachweis wurde für dieses Teil erbracht

Normnachweis EN 1993-1-1 Nationaler Anhang: Standard EN

Teil STR2	0,000 / 2,236 m	QRO100X4 S 23	5 Alle GZT_NL	0,10 -
-----------	-----------------	---------------	---------------	--------

Kombinationsvorschrift Alle GZT_NL / NC_CO11

Teilsicherheitsbeiwerte	
үмо für die Beanspruchbarkeit der Querschnitte	1,00
γ _{M1} für die Beanspruchbarkeit bei Stabilitätsversagen	1,00
γ _{M2} für die Beanspruchbarkeit der wirksamen Querschnitte	1,25

١	Material		
	Streckgrenze fy	235,0	MPa
	Zugfestigkeit f _u	360,0	MPa
	Herstellung	Gewalzt	

...::QUERSCHNITTSNACHWEIS::...

Der kritische Nachweis ist an Position 0,000 m

Schnittgrößen	Ermittelt	[Dim]
N _{Ed}	-11,65	kN
$V_{y,Ed}$	-0,30	kN
V _{z,Ed}	0,40	kN
T _{Ed}	0,00	kNm
$M_{y,Ed}$	0,00	kNm

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 53

Schnittgrößen	Ermittelt	[Dim]
M _{z,Ed}	0,00	kNm

Klassifizierung für den Querschnittsnachweis

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von internen und überstehenden Teilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 1 und 2

Id	Тур	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	kσ [-]	a [-]	c/t [-]	Klasse 1 Grenze [-]		Klasse 3 Grenze [-]	LFK-Klasse
1	I	88	4	7,657e+03	7,657e+03	1,00		1,00	22,00	33,00	38,00	42,00	1
3	I	88	4	7,657e+03	7,657e+03	1,00		1,00	22,00	33,00	38,00	42,00	1
5	I	88	4	7,657e+03	7,657e+03	1,00		1,00	22,00	33,00	38,00	42,00	1
7	I	88	4	7,657e+03	7,657e+03	1,00		1,00	22,00	33,00	38,00	42,00	1

Der Querschnitt ist als Klasse 1 klassifiziert

Nachweis bei Druckbeanspruchung

Gemäß EN 1993-1-1 §§6.2.4 und Formel (6.9)

Α	1,5200e-03	m ²
$N_{c,Rd}$	357,20	kN
Einheitsnachweis	0,03	-

Nachweis bei Querkraftbeanspruchung Vy

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
A _v	7,6000e-04	m ²
$V_{pl,y,Rd}$	103,11	kN
Einheitsnachweis	0,00	-

Nachweis bei Querkraftbeanspruchung Vz

Gemäß EN 1993-1-1 §6.2.6 und Formel (6.17)

η	1,20	
A _v	7,6000e-04	m ²
$V_{pl,z,Rd}$	103,11	kN
Einheitsnachweis	0,00	T-

Der Querschnittsnachweis für das Teil wurde erbracht.

...:STABILITÄTSNACHWEIS:....

Klassifizierung für den Biegeknicknachweis

Maßgebender Schnitt für die Stabilitätsklassifizierung: 1,677 m

Klassifizierung gemäß EN 1993-1-1 Artikel 5.5.2

Klassifizierung von internen und überstehenden Teilen gemäß EN 1993-1-1 Tabelle 5.2 Blatt 1 und 2

Id	Тур	c [mm]	t [mm]	σ ₁ [kN/m ²]	σ ₂ [kN/m ²]	Ψ [-]	k _σ [-]	a [-]	c/t [-]	Klasse 1 Grenze [-]	Klasse 2 Grenze [-]	Klasse 3 Grenze [-]	LFK-Klasse
1	I	88	4	5,896e+03	-2,410e+03	-0,41		0,71	22,00	48,13	55,42	78,49	1
3	I	88	4	-2,307e+03	8,250e+03	-0,28		0,78	22,00	43,24	49,79	72,70	1
5	I	88	4	9,108e+03	1,741e+04	0,52		1,00	22,00	33,00	38,00	49,85	1
7	I	88	4	1,731e+04	6,753e+03	0,39		1,00	22,00	33,00	38,00	52,58	1

Der Querschnitt ist als Klasse 1 klassifiziert

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18 Tel.: +49 173 640 4273

URL: aixineering.de Position: 2.1 Stanibau Ur

Unterkonstruktion Kranbahnanlage Haaren

Biegeknicknachweis

Herbesthal

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

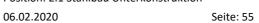
Knickparameter	уу	ZZ	
Verschieblichkeitstyp	Verschieblichkeit	unverschieblich	
Systemlänge L	2,236	2,236	m
Knickbeiwert k	2,02	0,97	
Knicklänge L _{cr}	4,513	2,164	m
Ideale Verzweigungslast N _{cr}	237,09	1031,55	kN
Schlankheit λ	115,27	55,26	
Relative Schlankheit λ _{rel}	1,23	0,59	
Grenzschlankheit λ _{rel,0}	0,20	0,20	
Knickfigur	а	a	
Imperfektion A	0,21	0,21	
Reduktionsbeiwert x	0,51	0,89	
Knickwiderstand N _{b,Rd}	183,22	319,45	kN

Kontrolle des Biegeknickens			
Querschnittsfläche A	1,5200e-03	m ²	
Knickwiderstand N _{b,Rd}	183,22	kN	
Einheitsnachweis	0.06	-	

Biegedrillknicknachweis

Gemäß EN 1993-1-1 §6.3.1.1 und Formel (6.46)

Bemerkung: Der Querschnitt bezieht sich auf ein rechteckiges Hohlprofil, das auf Biegedrillknickeinflüsse nicht empfindlich ist.


Nachweis der Biege- und Drucknormalkraftspannungen

Gemäß EN 1993-1-1 §§6.3.3 und Formel (6.61),(6.62)

Parameter für den Nachweis der Biege- und				
Drucknormalkraftspannungen				
Interaktionsverfahren	Alternatives Verfahren 1			
Querschnittsfläche A	1,5200e-03	m ²		
Plastischer Querschnittsmodul W _{pl,y}	5,4700e-05	m³		
Plastischer Querschnittsmodul W _{pl,z}	5,4700e-05	m ³		
Bemessungsdruckkraft N _{Ed}	11,65	kN		
Bemessungsbiegemoment (maximal) M _{y,Ed}	0,28	kNm		
Bemessungsbiegemoment (maximal) M _{z.Ed}	-0,22	kNm		
Charakteristischer Widerstand bei Druckbeanspruchung N _{Rk}	357,20	kN		
Charakteristischer Momentwiderstand M _{y,Rk}	12,85	kNm		
Charakteristischer Momentwiderstand M _{z,Rk}	12,85	kNm		
Reduktionsbeiwert xy	0,51			
Reduktionsbeiwert χ _z	0,89			
Reduktionsbeiwert XLT	1,00			
Interaktionsbeiwert kyy	1,04			
Interaktionsbeiwert k _{yz}	0,62			
Interaktionsbeiwert k _{zy}	0,66			
Interaktionsbeiwert k _{zz}	1,02			

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

Maximales Moment $M_{y,Ed}$ ist von Träger STR2 Position 1,677 m abgeleitet. Maximales Moment $M_{z,Ed}$ ist von Träger STR2 Position 1,677 m abgeleitet.

9 kN .55 kN 3,52 kN .00e-05 m ³ .00e-05 m ³
kN 3,52 kN 0e-05 m³
3,52 kN 10e-05 m ³
00e-05 m ³
00e-05 m ³
00e-05 m ³
00e-06 m ⁴
00e-06 m ⁴
00e-06 m ⁴
lle A.2 Linie 2 (allgemein)
(ge,
kNm
111111
mm
le A.2 Linie 2 (allgemein)
= (,
kNm
111111
mm
9 kNm

Einheitsnachweis (6.61) = 0.06 + 0.02 + 0.01 = 0.10 - 0.000Einheitsnachweis (6.62) = 0.000 + 0.000 + 0.000 = 0.000

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 56

Der Stabilitätsnachweis wurde für dieses Teil erbracht

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

5.4. Auflagerreaktionen

5.4.1. Reaktionen

Nichtlineare Analyse, Extremwerte : Knoten

Auswahl: Alle

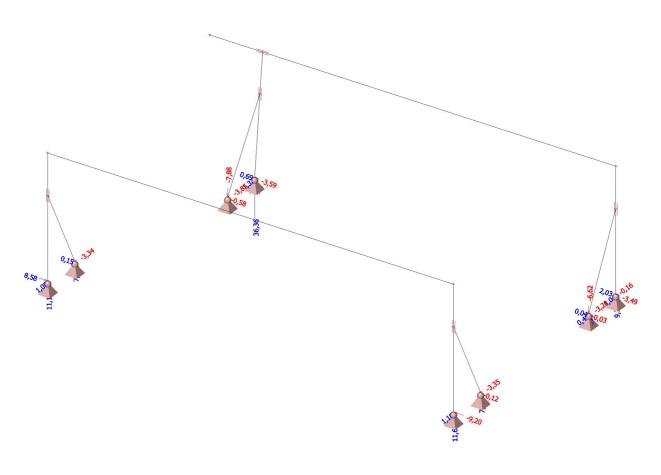
LFK-Klasse : Alle GZG_NL

A Gl		D	Des	D-	Man	D4-
Auflager	LF	Rx	Ry	Rz	Mx	Mz
A CI4 (N14	110 0001	[kN]	[kN]	[kN]	[kNm]	[kNm]
Aufl1/N1	NC_CO21	1,48	1,08	0,67	0,00	0,00
Aufl1/N1	NC_CO22	8,58	0,60	11,16	0,00	0,00
Aufl1/N1	NC_CO20	2,41	0,06	8,16	0,00	0,00
Aufl1/N1	NC_CO23	5,05	1,09	5,85	0,00	0,00
Aufl1/N1	NC_CO19	5,10	0,09	9,50	0,00	0,00
Aufl2/N2	NC_CO21	-9,20	0,10	11,63	0,00	0,00
Aufl2/N2	NC_CO19	-5,10	0,09	9,56	0,00	0,00
Aufl2/N2	NC_CO20	-7,42	1,10	4,14	0,00	0,00
Aufl5/N5	NC_CO20	0,01	-0,06	0,25	0,00	0,00
Aufl5/N5	NC_CO22	0,15	-1,70	3,64	0,00	0,00
Aufl5/N5	NC_CO21	0,07	-3,34	7,00	0,00	0,00
Aufl5/N5	NC_CO19	0,02	-0,09	0,26	0,00	0,00
Aufl6/N7	NC_CO22	-0,12	-1,70	3,64	0,00	0,00
Aufl6/N7	NC_CO20	0,00	-3,35	7,04	0,00	0,00
Aufl6/N7	NC_CO19	-0,02	-0,09	0,26	0,00	0,00
Aufl3/N9	NC_CO21	-3,59	1,26	22,44	0,00	0,00
Aufl3/N9	NC_CO22	0,69	0,69	22,53	0,00	0,00
Aufl3/N9	NC_CO20	-1,40	0,11	16,60	0,00	0,00
Aufl3/N9	NC_CO23	-1,46	1,32	36,36	0,00	0,00
Aufl3/N9	NC_CO19	-0,58	0,12	17,05	0,00	0,00
Aufl4/N10	NC_CO21	-3,49	-0,15	3,92	0,00	0,00
Aufl4/N10	NC_CO23	2,03	-0,16	0,32	0,00	0,00
Aufl4/N10	NC_CO20	-0,06	1,04	9,76	0,00	0,00
Aufl4/N10	NC_CO19	0,60	0,00	2,55	0,00	0,00
Aufl7/N13	NC_CO21	-0,58	-3,85	-7,87	0,00	0,00
Aufl7/N13	NC_CO19	-0,02	-0,12	-0,13	0,00	0,00
Aufl7/N13	NC_CO20	-0,03	-0,12	-0,14	0,00	0,00
Aufl7/N13	NC_CO23	-0,56	-3,85	-7,88	0,00	0,00
Aufl8/N15	NC_CO21	-0,03	0,49	1,11	0,00	0,00
Aufl8/N15	NC_CO22	0,04	-1,37	-2,73	0,00	0,00
Aufl8/N15	NC_CO20	-0,01	-3,28	-6,62	0,00	0,00
Aufl8/N15	NC_CO19	0,00	0,01	0,12	0,00	0,00
	•					

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710 Herbesthal

Tel.: +49 173 640 4273


URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 58

5.4.2. 1,0-fache Reaktionen

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

5.4.3. Reaktionen

Nichtlineare Analyse, Extremwerte : Knoten

Auswahl: Alle

LFK-Klasse : Alle GZT_NL

	_					
Auflager	LF	Rx	Ry	Rz	Mx	Mz
A (14 /A)4	NG COAC	[kN]	[kN]	[kN]	[kNm]	[kNm]
Aufl1/N1	NC_CO16	-0,35	1,59	-3,74	0,00	0,00
Aufl1/N1	NC_CO13	12,12	0,90	15,31	0,00	0,00
Aufl1/N1	NC_CO15	1,07	0,06	7,49	0,00	0,00
Aufl1/N1	NC_CO14	6,82	1,63	7,34	0,00	0,00
Aufl1/N1	NC_CO9	6,88	0,12	12,83	0,00	0,00
Aufl2/N2	NC_CO12	-13,04	0,14	16,02	0,00	0,00
Aufl2/N2	NC_CO10	-5,10	0,09	9,56	0,00	0,00
Aufl2/N2	NC_CO11	-10,38	1,65	4,78	0,00	0,00
Aufl2/N2	NC_CO15	-8,59	1,62	1,43	0,00	0,00
Aufl2/N2	NC_CO9	-6,88	0,12	12,90	0,00	0,00
Aufl5/N5	NC_CO15	0,00	-0,06	0,24	0,00	0,00
Aufl5/N5	NC_CO13	0,22	-2,55	5,43	0,00	0,00
Aufl5/N5	NC_CO12	0,12	-5,00	10,47	0,00	0,00
Aufl5/N5	NC_CO9	0,03	-0,12	0,36	0,00	0,00
Aufl6/N7	NC_CO13	-0,17	-2,55	5,43	0,00	0,00
Aufl6/N7	NC_CO15	0,02	-4,99	10,42	0,00	0,00
Aufl6/N7	NC_CO11	0,01	-5,02	10,52	0,00	0,00
Aufl6/N7	NC_CO10	-0,02	-0,09	0,26	0,00	0,00
Aufl6/N7	NC_CO9	-0,03	-0,12	0,36	0,00	0,00
Aufl3/N9	NC_CO12	-5,29	1,88	31,11	0,00	0,00
Aufl3/N9	NC_CO17	1,33	0,99	25,28	0,00	0,00
Aufl3/N9	NC_CO15	-1,81	0,11	16,37	0,00	0,00
Aufl3/N9	NC_CO14	-2,12	1,98	52,01	0,00	0,00
Aufl3/N9	NC_CO9	-0,78	0,16	23,02	0,00	0,00
Aufl4/N10	NC_CO16	-5,53	-0,22	4,59	0,00	0,00
Aufl4/N10	NC_CO14	2,96	-0,25	0,09	0,00	0,00
Aufl4/N10	NC_CO15	-0,39	1,56	13,36	0,00	0,00
Aufl4/N10	NC_CO18	2,75	-0,25	-0,80	0,00	0,00
Aufl4/N10	NC_CO11	-0,18	1,55	14,25	0,00	0,00
Aufl4/N10	NC_CO9	0,81	0,00	3,44	0,00	0,00
Aufl7/N13	NC_CO12	-0,89	-5,77	-11,79	0,00	0,00
Aufl7/N13	NC_CO10	-0,02	-0,12	-0,13	0,00	0,00
Aufl7/N13	NC_CO15	-0,03	-0,12	-0,14	0,00	0,00
Aufl7/N13	NC_CO14	-0,83	-5,77	-11,82	0,00	0,00
Aufl7/N13	NC_CO9	-0,03	-0,16	-0,18	0,00	0,00
Aufl8/N15	NC_CO16	-0,05	0,74	1,61	0,00	0,00
Aufl8/N15	NC_CO13	0,07	-2,06	-4,10	0,00	0,00
Aufl8/N15	NC_CO15	-0,02	-4,92	-10,00	0,00	0,00
Aufl8/N15	NC_CO12	-0,05	0,74	1,64	0,00	0,00
Aufl8/N15	NC_CO9	0,00	0,01	0,17	0,00	0,00

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710 Herbesthal Tel.: +49 173 640 4273

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 60

5.4.4. Gamma-fache Reaktionen

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Herbesthal

Tel.: +49 173 640 4273

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

06.02.2020 Seite: 61

5.4.5. Fundamenttabelle

Gruppe Knoten:LF-Gruppe: Gründungstabelle:

		-					
LF/Knoten		N1	N2	N5	N7	N9	N10
Ständige Laste			_		_		
LC1,LC2	Rx [kN]	5,04	-5,04	0,03	-0,03	-0,63	0,63
LC1,LC2	Ry [kN]	0,01	0,01	-0,01	-0,01	-0,01	-0,01
LC1,LC2	Rz [kN]	9,66	9,66	0,13	0,13	16,81	2,52
LC1,LC2	Mx [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC1,LC2	My [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC1,LC2	Mz [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
Variable Laste	_						
LC3	Rx [kN]	-2,70	-2,25	-0,01	-0,03	-0,82	-0,69
LC3	Ry [kN]	-0,00	1,01	0,01	-3,27	0,00	1,01
LC3	Rz [kN]	-1,34	-5,41	-0,01	6,76	-0,46	7,21
LC3	Mx [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC3	My [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC3	Mz [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
Variable Laste	n - exklusiv						
LC4	Rx [kN]	-3,52	-4,16	0,00	-0,02	-3,09	-4,06
LC4	Ry [kN]	1,01	0,00	-3,26	-0,00	1,16	-0,15
LC4	Rz [kN]	-8,82	2,07	6,74	0,01	5,43	1,32
LC4	Mx [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC4	My [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
LC4	Mz [kNm]	0,00	0,00	0,00	0,00	0,00	0,00
Extremwerte							
	Max Rz [kN]	9,66	11,74	6,87	6,89	22,24	9,72
	Min Rz [kN]	0,84	4,25	0,12	0,13	16,36	2,52
	Max Rx [kN]	5,04	-5,04	0,03	-0,03	-0,63	0,63
	Min Rx [kN]	1,53	-9,21	0,01	-0,06	-3,72	-3,43
	Max Ry [kN]	1,03	1,03	-0,01	-0,01	1,15	1,00
	Min Ry [kN]	0,01	0,01	-3,27	-3,28	-0,01	-0,17
	Max Mx	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						
	Min Mx	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						
	Max My	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						
	Min My	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						
	Max Mz	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						
	Min Mz	0,00	0,00	0,00	0,00	0,00	0,00
	[kNm]						

LF/Knoten		N13	N15				
Ständige Lasten							
LC1,LC2	Rx [kN]	-0,01	0,00				
LC1,LC2	Ry [kN]	0,01	0,02				
LC1,LC2	Rz [kN]	0,13	0,13				
LC1,LC2	Mx [kNm]	0,00	0,00				
LC1,LC2	My [kNm]	0,00	0,00				
LC1,LC2	Mz [kNm]	0,00	0,00				

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.1 Stahlbau Unterkonstruktion

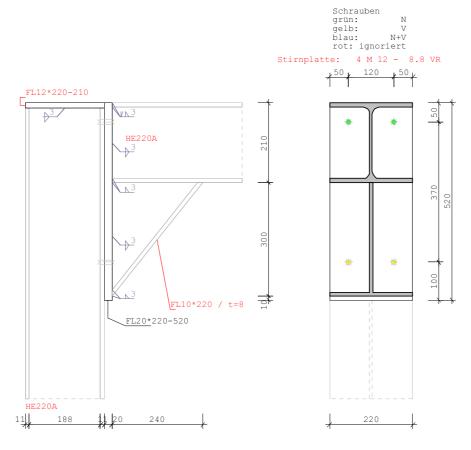
06.02.2020 Seite: 62

LF/Knoten		N13	N15
Variable Laster	- exklusiv		
LC3	Rx [kN]	-0,01	0,02
LC3	Ry [kN]	0,00	-3,26
LC3	Rz [kN]	0,00	-6,75
LC3	Mx [kNm]	0,00	0,00
LC3	My [kNm]	0,00	0,00
LC3	Mz [kNm]	0,00	0,00
Variable Laster	ı - exklusiv		
LC4	Rx [kN]	-0,50	-0,04
LC4	Ry [kN]	-3,75	0,49
LC4	Rz [kN]	-7,77	1,02
LC4	Mx [kNm]	0,00	0,00
LC4	My [kNm]	0,00	0,00
LC4	Mz [kNm]	0,00	0,00
Extremwerte			
	Max Rz [kN]	0,13	1,15
	Min Rz [kN]	-7,64	-6,62
	Max Rx [kN]	-0,01	0,02
	Min Rx [kN]	-0,51	-0,04
	Max Ry [kN]	0,01	0,51
	Min Ry [kN]	-3,74	-3,25
	Max Mx [kNm]	0,00	0,00
	Min Mx [kNm]	0,00	0,00
	Max My [kNm]	0,00	0,00
	Min My [kNm]	0,00	0,00
	Max Mz [kNm]	0,00	0,00
	Min Mz [kNm]	0,00	0,00

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

2.2 Position: 2.1.1 Rahmenecke Geschraubte Vouten Verbindung


Geschraubte Rahmenecke ST10 01/2020/A (Frilo R-2020-1/P05)

GESCHRAUBTES K-ECK

Königin Astrid Straße 18

Herbesthal

Maßstab 1:10

MATERIAL S235	fyk =	235 N/mm ²	E-Mod =	210000 N/mm ²
	fuk =	360 N/mm²	βW =	0,80
Teilsicherheitsbeiwerte	$\gamma M0 = 1$,00 γM1 =	1,10 γM2	2 = 1,25

QUERSC	HNITT	Έ	h	b	S	t	r	
Stütze		220 A	210,0	220,0		-	18,0 mm	
Riegel	HE	220 A	210,0	220,0	7,0	11,0	18,0 mm	

AUSSTEIFUNG	I	h	S	b	t	r
Eckaussteifung mit Gurt unten	240,0	300,0	8,0 220,0 10,0		,0	0,0 mm

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren

Position: 2.1.1 Rahmenecke

06.02.2020 Seite: 64

STIRNPLATTE	h	b	t	awo	aws	awu
	520,0	220,0	20,0	3,0	3,0	3,0 mm
Abstand OK-Stirnplatte zu OK-Riegel				a =		0,0 mm

SCHRAUBE M 12 VR	(N/mm²,kN)	fybk	fubk	F_Klasse	Fv
Schaft in Fuge		640	800	8.8	35

SCHRAUBENBILD Stirnplatte	2 Reihen je 2	2 Schrauben	dL =	13,0 mm
Abstand e (Reihen , v. oben)	50,0 /	370,0 /	100,0	mm
Abstand w (Spalten, v. links)	50,0 /	120,0 /	50,0	mm

KOPFPLATTE	h	b	t	awf	aws	
orthogonal	210,0	220,0	12,0	3,0	3,0	mm

SCHNITTGRÖSSEN	(kN,m)	Nd	Vzd	Myd
rechts (Riegel, im Bezugspu	unkt C)	-20,00	20,00	-40,00
Anschlußschnittgrößen Moment Myd = -37,3	rechts horizontal Nd	,	hwerpunkt Anso vertikal Vzd	chnitt) = 26,7

NACHWEIS ANSCHLU	SS nach Komponentenverfahren	(Druck negativ)
Berechnungsoptioner	ı (Vorgaben)	
nach DIN EN 1993		el-pl für negatives Moment
	Vouton und Trägerflansch	

Der Winkel zwischen Vouten- und Trägerflansch sollte nicht größer als 45° sein!

Übertragungsparameter (Tab. 5.4) für Anschlussart	$\beta = 1,00$
Zugschrauben MRd im Bereich Anschlusshöhe * f ansetzen :	f = 0.50

wirksame Schraubenreihen von OK Stirnplatte gezählt			
plastische Grenzzugkraft Schraubenreihe	1	Ft _{Rd} =	93,73 kN

Grenzmoment Mard, elastisch	=	28,24	MaRd,plastisch = η =	42,37 kNm 0,82
zuerst versagende Komponente:			Stützenflansch auf Biegu	ing

Schubbeanspr	uchung im Sti	itzensteg (Gl.	5.3 und 6.7	7)		
Schubkraft	= bagwV	77.95	= bAqwV	251.91 kN	n =	0.31	

Grenzquerkraft wirksamer Schraubenreihen, von OK Stirnplatte gezählt						
Schraubenreihe	Va Rd	VI _{Rd} ,gurt	VI _{Rd} ,platte			
2	86,78	190,08	345,60 kN			
Grenzquerkraft Anschluss		V	Rd = 86,78 kN η = 0,31			

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Zuggurt Riegel u.

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren

Position: 2.1.1 Rahmenecke

06.02.2020 Seite: 65

Schweißnaht 47,9 N/mm² Steg σw,v = η = 0,23 Druckgurt $\sigma w, v = -63,9 \text{ N/mm}^2$ η = 0,31 Zuggurt Riegel o. konstr erf.aw 3,0 mm

3,0 mm

Rotationssteifigkeit/Klassifizierung unter Momentenbeanspruchung:

konstr erf.aw

Steifigkeit Sj ini= 28442,35 14221,17 kNm/rad Sj_n=

Klassifizierung nach Tragfähigkeit teiltragfähig

Klassifizierung nach Steifigkeit verformbar

verschieblich, mit Rahmen seitlich L,riegel 8,50 m

MAXIMALE AUSLASTUNG AUS ALLEN NACHWEISEN

aus Grenzmoment Anschluss = 0,82 < 1

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

2.3 Position: 2.2.1 Kranbahnträger 1Feldträger HEA220

Kranbahnträger S9+ 01/2020 (FRILO R-2020-1/P05)

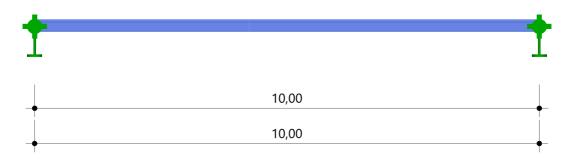
Grundparameter

Bemessungsnorm
Sicherheitskonzept/Lastkombinatorik
Kombination ständiger Lasten
Querschnittsbemessung
Systemtragfähigkeit
Bemessungskonzept
Inspektionsintervalle

Inspektionsintervalle
Schubspannungen infolge primärer Torsion
Schubspannungen infolge sekundärer Torsion
Bemessungssituation Gebrauchstauglichkeit
Nachweis Absolutverformung in y mit
Nachweis Absolutverformung in z mit

DIN EN 1993-6/NA-2010-12 DIN EN 1990/NA:2010-12 untereinander mit $\gamma_{G,sup}$ und $\gamma_{G,inf}$ elastisch

Theorie II. Ordnung Konzept der Schadenstoleranz 3 berücksichtigt


> charakteristisch 1,7 cm 2,0 cm

berücksichtigt

<u>System</u>

Kranbahnträger

Maßstab 1:75

 $\delta_{lim} =$

 δ_{lim}

Gesamtlänge = 10,00 m Material S235

Querschnitt HE 220 A

Statische Werte

Bezeichnung	l _y [cm ⁴]	Iz [cm ⁴]	It [cm ⁴]	l _w [cm ⁶]	max _w [cm ²]	A [cm ²]	z s [mm]	zм [mm]
HE 220 A	7834,6	1996,4	100,7	202515	-109,9	84,5	-30	27
Schiene 75 %	7186,2	1986,0	70,5	200423	-109,7	79,5	-23	21
Schiene 87,5 %	7506,0	1991,2	84,8	201443	-109,8	82,0	-26	24

Abmessungen

Abmessungen

Abnutzung

40 mm

30 mm

h =

 $h_{red} =$

PROJECT: Unterkonstruktion Kranbahnanlage Haaren	PROJECT-NR: 20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

b = 50 mm $h_{red,fat} = 35 \text{ mm}$

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 67

Spannungspunkte

Punkt	O-Punkt S-Punkt		ſ	M-Punkt	Verwölbung	Kerbfallart	Kerbfall				
	yo	ZO	y s	ZS	УМ	ZM	ω		σx	σz	τ _{xz}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[cm ²]		[I	N/mm²	
1	-110	-105	-110	-75	-110	-132	-109,0	Profil	160	160	100
2	0	-105	0	-75	0	-132	0,0				
3	110	-105	110	-75	110	-132	109,0	Profil	160	160	100
4	-110	105	-110	135	-110	78	109,9	Profil	160	160	100
5	0	105	0	135	0	78	0,0				
6	110	105	110	135	110	78	-109,9	Profil	160	160	100
7	-4	-76	-4	-46	-4	-103	0,0	Profil	160	160	100
8	-4	76	-4	106	-4	49	0,0	Profil	160	160	100
9	-4	0	-4	30	-4	-27	0,0				
17	4	-76	4	-46	4	-103	0,0	Profil	160	160	100
18	4	76	4	106	4	49	0,0	Profil	160	160	100
19	4	0	4	30	3	-27	0,0				
20	25	-145	25	-115	25	-172	0,0				
21	-25	-145	-25	-115	-25	-172	0,0				
22	25	-105	25	-75	25	-132	0,0	Schweißnaht	125	36	80
23	-25	-105	-25	-75	-25	-132	0,0	Schweißnaht	125	36	80
24	0	-145	0	-115	0	-172	0,0				

Quersteifen

Nr	X ₀	to	aw	Kerbfall,Schweißnah		
				Steg	Flansch	
	[m]	[mm]	[mm]	[N/mm ²]	[N/mm ²]	
1	4,25	15	4	80	80	
2	10,00	10	4	80	80	

Auflager

Lagerbedingungen - Verschiebung

		Verschieb	oungen *)	Abstände							
Nr	X	V	W	у	Z						
	[m]	[kN/m]	[kN/m]	[mm]	[mm]						
1	0,00	-1	-1	0	0						
2	10,00	-1	-1	0	0						
*) -1 = starr	*) -1 = starr, 0 = frei, > 0 = elastisch										

Lagerbedingungen - Verdrehungen

			Verdrehungen*)							
Nr	X	Фх	Фу	Фz	$\Omega_{y,z}$					
	[m]	[kNm/rad]	[kNm/rad]	[kNm/rad]	Ω _{y,z} [kNm³]					
1	0,00	-1	-1	-1	0,00					
2	10,00	-1	-1	-1	0,00 0,00					
*) -1 = 9	*) -1 = starr, 0 = frei, > 0 = elastisch									

Belastung

Kransystem und Krane

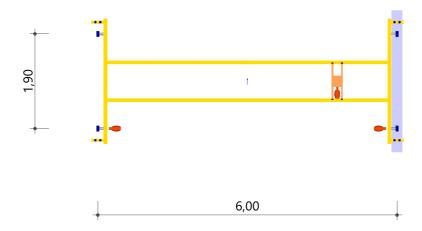
Kranparameter

Kranart : Aufgesetzter Brückenlaufkran
Anzahl Krane = 1
Spannweite Kranbrücke = 6,00 m
Erdbebenlasten : nicht berücksichtigt

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273

URL: aixineering.de


Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 68

Maßstab 1:75

Kran

Kran [Nr]	Bezeichnung	НС	Si	System	Spurführung	v0 [m/min]	vh [m/min]
1	ELV 1,6 t x6000 mm	2	4	IFF	Rollen außen	40,00	5,00

Kranlasten

Kran	Achse	ai	ei	Qc	Qh	Qr	Qr,min	HT	HS
[Nr]	[j]	[m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	1 2	0,00 1,90	0,24 2,14	3,0 3,2	7,1 7,1	10,1 10,3	2,2 2,2	0,5 -1,8	0,0 -0,1

Lastdefinitionen

Art 1 = Gleichlast kN/m 5 = Dreieckslast über l kN/m 2 = Einzellast kN 6 = Trapezlast über l kN/m 3 = Einzelmoment kNm 7 = Bereichstorsionsmoment kNm/m

4 = Trapezlast kN/m 8 = Normalkraftverlauf kN/m

Lastfall 1: Eigengewicht

Art	in/um	Pli	a [m]	Pre	l [m]	ey [mm]	ez [mm]	Bemerkungen zur Last				
1 1	Z Z	0,50 0,16				0	0 -125	Träger-g0 Schiene-g1				
Einwirk	Einwirkungsgruppe 99 - ständig											

Lastfall 2: Kran 1 - Kraneigengewicht Qc,max

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2	z z	3,0 3,2	1,90 0,00					Qc,2,1,max,ncrane=1 Qc,2,2,max,ncrane=1

Einwirkungsgruppe 120 - Kranlastgruppe - Qc Einzellasten werden als bewegte Lasten angesetzt

PROJECT: Unterkonstruktion Kranbahnanlage Haaren	PROJECT-NR: 20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18

Tel.: +49 173 640 4273

Position: 2.2.1 Kranbahnträger

Unterkonstruktion Kranbahnanlage Haaren

06.02.2020

B-4710 Herbesthal URL: aixineering.de

Lastfall 3: Kran 1 - Kranbetrieb Qh,max

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2 2	Z Z	7,1 7,1	1,90 0,00					Qh,2,1,max,ncrane=1 Qh,2,2,max,ncrane=1

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Lastfall 4: Kran 1 - Massekräfte HT

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2	у	0,5	1,90			0		HT,2,1,ncrane=1
2	y y	0,07 -1,8	1,90 0,00			0		Mx(HT,2,1,ncrane= 1) HT,2,2,ncrane=1
3	X	-0,26	0,00					Mx(HT,2,2,ncrane= 1)

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Lastfall 5: Kran 1 - Schräglaufkräfte HS

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2 3	y x	-0,1 -0,01	0,00 0,00			0		HS,2,2,ncrane=1 Mx(HS,2,2,ncrane=1)

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Berechnung nach DIN EN 1993-6/NA-2010-12

Kranfahrt 1: LG 1: Qc+Qh+HT - STR P/T

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,35	1,00	1,35
2	Kran 1 - Kraneigengewicht Qc, max	1	1,10	1,35	1,00	1,49
3	Kran 1 - Kranbetrieb Qh,max	1	1,13	1,35	1,00	1,52
4	Kran 1 - Massekräfte HT	1	1,50	1,35	1,00	2,03

Querschnittsnachweis nach Gleichung 6.1 - Theorie II. Ordnung γ_{M0} = 1,10

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
0,00	4	1	-111,3	4,6	111,6	213,6	0,52
0,10	4	1	-106,1	4,6	106,4	213,6	0,50
0,20	4	1	-100,9	4,5	101,2	213,6	0,47
0,30	4	1	-95,5	4,5	95,9	213,6	0,45
0,40	4	1	-90,2	4,5	90,5	213,6	0,42
0,50	4	1	-84,8	4,4	85,2	213,6	0,40
0,60	4	1	-79,4	4,4	79,8	213,6	0,37
0,70	4	1	-74,0	4,3	74,4	213,6	0,35
0,80	4	1	-68,6	4,2	68,9	213,6	0,32
0,90	4	1	-63,1	4,1	63,5	213,6	0,30
1,00	4	1	-57,7	4,1	58,1	213,6	0,27
1,10	4	1	-52,2	4,0	52,7	213,6	0,25
1,20	4	1	-46,8	3,9	47,3	213,6	0,22
1,30	4	1	-41,4	3,8	41,9	213,6	0,20

LIENT:	DATE:
nterkonstruktion Kranbahnanlage Haaren 2	20004
ROJECT: PF	PROJECT-NR:

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 70

Unterkonstruktion Kranbahnanlage Haaren

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
1,40	8	1	-22,0	-17,1	36,9	213,6	0,17
1,50	8	1	-18,7	-17,0	34,9	213,6	0,16
1,60	8	1	-15,5	-16,8	33,0	213,6	0,15
1,70	9	1	-2,8	-18,2	31,7	213,6	0,15
1,80	19	1	-2,1	-18,0	31,3	213,6	0,15
1,90	19	1	-1,4	-17,9	31,0	213,6	0,15
2,00	19	1	-0,7	-17,7	30,7	213,6	0,14
2,10	9	1	0,3	-17,5	30,4	213,6	0,14
2,20	9	1	1,1	-17,3	30,1	213,6	0,14
2,60	3	1	-34,5	1,4	34,5	213,6	0,16
2,80	3	1	-44,8	0,6	44,8	213,6	0,21
2,90	3	1	-50,1	0,2	50,1	213,6	0,23
3,00	3	1	-48,7	0,3	48,7	213,6	0,23
3,70	4	1	50,0	2,1	50,1	213,6	0,23
4,70	4	1	58,4	2,2	58,5	213,6	0,27
4,80	4	1	59,1	2,1	59,2	213,6	0,28
5,30	4	1	48,0	1,6	48,1	213,6	0,23
7,10	19	1	1,4	9,0	15,6	213,6	0,07
9,10	4	1	-44,4	1,1	44,4	213,6	0,21
10,00	4	1	-67,8	1,3	67,8	213,6	0,32

Lokale Radlasteinleitung am Obergurt bei x = 9,90 m

 $\eta = 0.23 <= 1$ Nachweis erfüllt

Kranschiene: Höhe $h_{eff} = 30$ Obergurt: Breite $b_{eff} = 91$ mm mm

Breite br = 50Dicke $t_0 = 11$ mm mm Querschnitt: gesamt $Irf = 37,5 \text{ cm}^4$ Fläche $A_{eff} = 25,0 \text{ cm}^2$ ly effektiv:

Schwerpunkt $e_1 = 21$ mm Kranschiene $I_r = 11,3$ cm⁴ $\,\mathrm{cm^4}$

 $t_w = 7$ Stegdicke Obergurt If,eff = 1,0 mm effektiv leff = 123mm

Lastausbreitungslänge: Obergurt gesamt $x_w = 159$ mm Unterkante z = 18mm

х	Qr,Ed	σ oz,Ed	Toxz,Ed	τ Ed	τ	σ x,Ed	σν	η
[m]	[kN]		[N/mm ²]					
0,10 9,90	15,6 15,3	14,0 13,8	2,8 2,8	23,4 26,2	26,2 29,0	21,3 19,7	51,2 54,1	0,22 0,23

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 2,90 m

 $\eta = 0.04 <= 1$ Nachweis erfüllt

Scherfestigkeit der Schweißnaht $f_{w,Rd} = 207.8 \text{ N/mm}^2 \quad f_u * sqr(3) / (\beta_w * \gamma_{M2})$

Schweißnahtdicke aw = 10 mm leff - 2 * t Flansch effektive Lastausbreitungslänge **s**s = 101 mm

leff = 123 mm statisches Moment der Schiene $S_{Schiene} =$ 22,5 cm³

Zugfestigkeit des Stahls $f_u = 360,0 \text{ N/mm}^2$ Teilsicherheitsbeiwert γ_{M2} = 1,25 Korrelationsbeiwert βw = 0,80

x	Q _{r,d}	σ _{w,Qr}	H _{r,d}	σ _{w,Hr}	V _{z,d}	τ _{w,Vz}	σν _{gl,d}	η
[m]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]	[N/mm²]	[N/mm²]	
2,90	15,6	7,7	3,6	1,8	33,6	0,5	8,0	0,04
4,80	15,3	7,6	1,0	0,5	33,6	0,5	7,6	0,04

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Herbesthal

B-4710

Königin Astrid Straße 18 Tel.: +49 173 640 4273 Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 71

Nachweis auf Stegbeulen im Feld bei x = 4,80 m

Abmessungen 5750 mm Länge = Abstand der Quersteifen a =

URL: aixineering.de

Beulfeld: b = 188 mm Breite = Steghöhe Dicke = Stegdicke tw =

7 mm

Radlast einschließlich Schwingbeiwert Bemessungswerte: 15,6 kN FEd =

 $M_{v,Ed} =$ 30,57 kNm Biegemoment $V_{z,Ed} =$ -3,2 kN Querkraft

Beanspruchbarkeit des Steges: Plattenbeulen bei QuerbelastungEN1993-1-5 Abs.6 γ_{M1} = 1,10

 $F_{R,d} =$ 367,6 kN 0,04 <= 1 η2 =

Ideale Verzweigungslast $F_{cr} =$ 2069,7

starre Lastausbreitungslänge leff-2*tFlansch s = 101 mm

Beiwerte $m_1 =$ 31,43 $m_2 =$ 0,00 Beulwert k_F = 6,00 Schlankheitsgrad Λ_F = 0,44 Abminderungsfaktor 1,00 χF 246 mm =

wirksame Lastausbreitungslänge Leff = 246 mm $I_y * \chi_F$

Beanspruchbarkeit des Steges : Schubbeulen EN1993-1-5 Abs.5 γ_{M1} = 1,10

 $V_{b,Rd} =$ 194,8 kN $V_{Ed}/V_{b,Rd} =$ 0,02 <= 1 ηз =

Interaktion M/N nicht erforderlich $M_{Rd} = 113,17 \text{ kNm}$

Schlankheitsgrad ∧w = 0,012 Abminderungsfaktor χw = 1,20

Nachweis der Längspannungen mit wirksamen Querschnittsgrößen γм0 = 1,00

η1 = 0,23 <= 1 $W_{eff} =$ 563,0 cm³

Interaktion zwischen Biegung und Querlast nach EN1993-1-5 GI(7.2)

 $(\eta_1 + 0.8 * \eta_2)/1.4$ $\eta_{7.2} =$ 0,16 <= 1

Interaktion zwischen Querkraft und Querlast nach DIN EN1993-1-5/NA GI(NA.7)

 η DIN = 0,00 <= 1

Nachweisführung 0,23 <= 1 Nachweis erfüllt η max =

Kranfahrt 2: LG 5: Qc+Qh+HS - STR P/T

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,35	1,00	1,35
2	Kran 1 - Kraneigengewicht Qc,max	5	1,00	1,35	1,00	1,35
3	Kran 1 - Kranbetrieb Qh,max	5	1,00	1,35	1,00	1,35
5	Kran 1 - Schräglaufkräfte HS	5	1,00	1,35	1,00	1,35

Querschnittsnachweis nach Gleichung 6.1 - Theorie II. Ordnung γμο = 1,10

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
0,00	4	1	-82,2	0,5	82,2	213,6	0,38
0,10	4	1	-78,0	0,5	78,0	213,6	0,37
0,80	4	1	-48,4	0,6	48,4	213,6	0,37 0,23 0,14
2,50	8	1	16,5	-14,3	29,7	213,6	0,14
2,50	4	1	22,0	0,8	22,0	213,6	0,10
2,50 3,00	4	1	29,3	0,8	29,3	213,6	0,14
3,40	4	1	34,8	0,6	34,8	213,6	0,16

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 72

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
4,40	4	1	47,1	0,2	47,1	213,6	0,22
4,50	4	1	45,8	0,1	45,8	213,6	0,21
4,60	4	1	44,4	0,1	44,4	213,6	0,21
4,70	4	1	43,1	0,01	43,1	213,6	0,20
5,00	4	1	38,9	0,1	38,9	213,6	0,18
5,80	4	1	27,1	0,5	27,1	213,6	0,13
7,10	9	1	0,9	7,1	12,3	213,6	0,06
7,20	9	1	0,6	7,2	12,4	213,6	0,06
9,10	4	1	-32,8	0,5	32,8	213,6	0,15
10,00	5	1	-51,0	-3,3	51,3	213,6	0,24

Lokale Radlasteinleitung am Obergurt bei x = 0,10 m

 $\eta = 0.19 <= 1$ Nachweis erfüllt

Kranschiene: Höhe $h_{eff} = 30$ mm Obergurt: Breite $b_{eff} = 91$ mm

Breite $b_r = 50$ mm Dicke $t_o = 11$ mm Querschnitt: Fläche $A_{eff} = 25,0$ cm² I_y effektiv: gesamt $I_{rf} = 37,5$ cm⁴

Schwerpunkt $e_1 = 21$ mm Kranschiene $I_r = 11,3$ cm⁴

Stegdicke $t_w=7$ mm Obergurt $I_{f,eff}=1,0$ cm⁴ Lastausbreitungslänge: effektiv $I_{eff}=123$ mm

gesamt $x_w = 159$ mm Unterkante Obergurt z = 18 mm

η	σν	σx,Ed	τμ	τ Ed	Toxz,Ed	σ oz,Ed	Qr,Ed	x
	[N/mm ²]						[kN]	[m]
0,19 0,19	45,7	19,5	23,2	20,7	2,5	12,5	13,9	0,10
	45,7 44,2	19,5 17,5	23,2 23,0	20,7 20,5	, , ,		13,9 13,6	0,10 9,90

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 2,50 m

 $\eta = 0.03 \le 1$ Nachweis erfüllt

Scherfestigkeit der Schweißnaht $f_{w,Rd} = 207.8 \text{ N/mm}^2 \quad f_u * \text{sqr}(3) / (\beta_w * \gamma_{M2})$

Schweißnahtdicke aw = 10 mm

effektive Lastausbreitungslänge ss = 101 mm leff - $2 * t_{Flansch}$ leff = 123 mm

statisches Moment der Schiene Sschiene = 22,5 cm³ Zugfestigkeit des Stahls fu = 360,0 N/mm²

Teilsicherheitsbeiwert $\gamma_{M2} = 1,25$ Korrelationsbeiwert $\beta_{w} = 0,80$

x	Qr,d	σ _{w,Qr}	Hr,d	σw,Hr	Vz,d	τw,Vz	σν _{gl,d}	η
[m]	[kN]	[N/mm ²]	[kN]	[N/ mm²]	[kN]	[N/mm²]	[N/mm²]	
2,50	13,9	6,9	0,1	0,1	30,5	0,5	6,9	0,03
4,40	13,6	6,8	0,0	0,0	30,5	0,5	6,8	0,03

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Herbesthal

B-4710

Königin Astrid Straße 18 Tel.: +49 173 640 4273 Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 73

Nachweis auf Stegbeulen im Feld bei x = 4,80 m

Abmessungen 5750 mm Länge = Abstand der Quersteifen a = Beulfeld: b =

URL: aixineering.de

188 mm Breite = Steghöhe Dicke = Stegdicke tw = 7 mm

Radlast einschließlich Schwingbeiwert Bemessungswerte: 13,9 kN FEd =

 $M_{v,Ed} =$ 27,75 kNm Biegemoment $V_{z,Ed} =$ 11,0 kN Querkraft

Beanspruchbarkeit des Steges: Plattenbeulen bei QuerbelastungEN1993-1-5 Abs.6 γ_{M1} = 1,10

 $F_{R,d} =$ 367,6 kN η2 = 0,04 <= 1

Ideale Verzweigungslast $F_{cr} =$ 2069,7

starre Lastausbreitungslänge s = leff-2*tFlansch 101 mm

Beiwerte m1 = 31,43 $m_2 =$ 0,00 Beulwert k_F = 6,00 0,44 Schlankheitsgrad Λ_F = Abminderungsfaktor 1,00 χF 246 mm =

wirksame Lastausbreitungslänge 246 mm Leff = $I_y * \chi_F$

Beanspruchbarkeit des Steges : Schubbeulen EN1993-1-5 Abs.5 γ_{M1} = 1,10

 $V_{b,Rd} =$ 194,8 kN $V_{Ed}/V_{b,Rd} =$ 0,06 <= 1 η3 =

 $M_{Rd} = 113,17 \text{ kNm}$

Interaktion M/N nicht erforderlich

Schlankheitsgrad ∧w = 0,012 Abminderungsfaktor χw = 1,20

Nachweis der Längspannungen mit wirksamen Querschnittsgrößen γм0 = 1,00

η1 = 0,21 <= 1 $W_{eff} =$ 563,0 cm³

Interaktion zwischen Biegung und Querlast nach EN1993-1-5 GI(7.2)

 $(\eta_1 + 0.8 * \eta_2)/1.4$ $\eta_{7.2} =$ 0,15 <= 1

Interaktion zwischen Querkraft und Querlast nach DIN EN1993-1-5/NA GI(NA.7)

 η DIN = 0,00 <= 1

Nachweisführung 0,21 <= 1 Nachweis erfüllt η max =

Kranfahrt 3: LG 12: Qc+Qh+HT - SERV

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht Kran 1 - Kraneigengewicht Qc,max	12	1,00 1.00	1,00 1.00	1,00 1,00	1,00 1,00
3	Kran 1 - Kranbetrieb Qh,max	12	1,00	1,00	1,00	1,00
4	Kran 1 - Massekräfte HT	12	1,00	1,00	1,00	1,00

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18 Tel.: +49 173 640 4273

Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 74

Verformungsnachweis

Herbesthal

Teilsicherheitsfaktor für Widerstände 1,00 $\gamma_{M,f} =$ Nachweisstelle für horizontale Verformungen x dy =5,10 m Horizontale Verschiebung des Schubmittelpunktes $d_{y0} =$ 0,2 cm Verdrehung des Trägers um die x-Achse $\phi_x = 0,0075 \text{ rad}$ Abstand zwischen Schubmittelpunkt und Lastangriffspunkt ем, z = 133 mm Horizontale Verformung am Lastangriffspunkt $\delta_y =$ 0,3 cm 1,7 cm Grenzwert für die horizontale Verformung $\delta_{y,lim} =$ Nachweis für horizontale Verformung $\delta_y / \delta_{y,lim} =$ 0,17 Nachweisstelle für vertikale Verformungen 5,00 m $x_{dz} =$

URL: aixineering.de

Vertikale Verschiebung des Schubmittelpunktes $\delta_z = 0.8 \, \text{cm}$ Grenzwert für die vertikale Verformung $\delta_{z,\text{lim}} = 0.38 \, \text{cm}$ Nachweis für vertikale Verformung $\delta_z/\delta_{z,\text{lim}} = 0.38 \, \text{cm}$

Vorverformungen: parabelförmig

Nr.	min x[m]	max x[m]	max y[cm]	max z[cm]	max theta[rad]	
1	0,00	10,00	2,0	0,0	0,0	

Kranbahnspezifische Nachweise

Nachweis auf Stegblechatmen

nach EN 1993-6, Absatz 7.4: $h_w/t_w = 22 < 120$ Nachweis erfüllt

Schwingungsbeschränkung des Unterflansches

Abstand der seitlichen Halterung L = 10,00 mTrägheitsradius $i_{z,fu} = 61 \text{ mm}$

nach EN 1993-6, Absatz 7.6 : $L/i_{z,fu} = 164 < 250$ Nachweis erfüllt

Kranfahrt 4: LG 13: Qc+Qh+HS - SERV

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,00	1,00	1,00
2	Kran 1 - Kraneigengewicht Qc,max	13	1,00	1,00	1,00	1,00
3	Kran 1 - Kranbetrieb Qh,max	13	1,00	1,00	1,00	1,00
5	Kran 1 - Schräglaufkräfte HS	13	1,00	1,00	1,00	1,00

Verformungsnachweis

Teilsicherheitsfaktor für Widerstände Nachweisstelle für horizontale Verformungen Horizontale Verschiebung des Schubmittelpunktes Verdrehung des Trägers um die x-Achse Abstand zwischen Schubmittelpunkt und Lastangriffspunkt Horizontale Verformung am Lastangriffspunkt Grenzwert für die horizontale Verformung Nachweis für horizontale Verformung	$\begin{array}{rcl} \gamma_{M,f} &=& \\ x_{dy} &=& \\ d_{y0} &=& \\ \phi_{x} &=& \\ \epsilon_{M,z} &=& \\ \delta_{y} &=& \\ \delta_{y,lim} &=& \\ \delta_{y} / \delta_{y,lim} &=& \end{array}$	1,00 5,20 m 0,01 cm 0,0027 rad 133 mm 0,03 cm 1,7 cm 0,02
Nachweisstelle für vertikale Verformungen Vertikale Verschiebung des Schubmittelpunktes Grenzwert für die vertikale Verformung Nachweis für vertikale Verformung	$\begin{array}{rcl} Xdz & = & \\ \delta z & = & \\ \delta z, lim & = & \\ \delta z/\delta z, lim & = & \end{array}$	5,00 m 0,8 cm 2,0 cm 0,38

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

B-4710

Königin Astrid Straße 18

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 75

Vorverformungen: parabelförmig

Herbesthal

Nr.	min x[m]	max x[m]	max y[cm]	max z[cm]	max theta[rad]
1	0,00	10,00	2,0	0,0	0,0

Kranbahnspezifische Nachweise

Nachweis auf Stegblechatmen

nach EN 1993-6, Absatz 7.4: $h_w/t_w = 22 < 120$ Nachweis erfüllt

Schwingungsbeschränkung des Unterflansches

Abstand der seitlichen Halterung L = 10,00 mTrägheitsradius $i_{z,fu} = 61 \text{ mm}$

nach EN 1993-6, Absatz 7.6 : $L/i_{z,fu} = 164 < 250$ Nachweis erfüllt

Kranfahrt 5: LG 14: Qc+Qh - FAT

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1 2	Eigengewicht Kran 1 - Kraneigengewicht Qc,max	14	1,00 1.05	1,00 1.00	1,00 1.00	1,00 1,05
3	Kran 1 - Kranbetrieb Qh,max	14	1,06	1,00	1,00	1,06

Eingangswerte Ermüdungsnachweis

Teilsicherheitsbeiwerte

Teilsicherheitsfaktor für Widerstände $\gamma_{M,f} = 1,15$ Teilsicherheitsfaktor für Einwirkungen $\gamma_{F,f} = 1,00$

Ermüdungsnachweis am Querschnitt

Querschnittspunkt 6(Profil) Kerbfall σ_x 160 σ_y 160 τ_{xz} 100 bei x =0,00 m

 $\eta = 0.19 <= 1$ Nachweis erfüllt

x [m]	Nr.		λ_{σ} λ_{τ}	Δ σ _C Δ τ _C	σ _{max} τ _{max} [N/m	σ _{min} τ _{min}	Δσε,2 Δτε,2	η _σ ητ	ηι
0,00	6	σ τ	0,500 0,660	160,0 100,0	-9,6 0,5	-62,3 0,1	26,4 0,3	0,19 0,00	0,01

Lokale Radlasteinleitung am Obergurt bei x = 0,10 m

 $\eta = 0.15 <= 1$ Nachweis erfüllt

Höhe heff = 35 $b_{eff} = 96$ Kranschiene: mm Obergurt: Breite mm **Breite** Dicke $t_0 = 11$ $b_r = 50$ mm mm Fläche $A_{eff} = 28,1$ Querschnitt: cm² ly effektiv: gesamt Irf = 53,8cm⁴ Ir = 17,9Schwerpunkt Kranschiene cm⁴ $e_1 = 23$ mm $\,{\rm cm^4}$ $t_w = 7$ Obergurt $I_{f,eff} = 1,1$ Stegdicke mm leff = 138Lastausbreitungslänge: effektiv mm $x_{w} = 174$ Unterkante Obergurt z = 18gesamt mm mm

Werte für die Ermittlung der Spannungen infolge exzentrischer Radlast

Quersteifen Abstand α = 4,25 m Exzentrizität Radlast e_y = 13 mm Steghöhe h_w = 188 mm Kranschiene It = 50,0 cm⁴

Beiwert $\eta = 3,44$

 $T_{Ed} = 0.14 \text{ kNm}$ $\sigma_{TEd} = 13.5 \text{ N/mm}^2$

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren

Position: 2.2.1 Kranbahnträger

06.02.2020 Seite: 76

х	Qr,Ed		λσ	Δσς	σ_{max}	σmin	Δσε,2	ησ	λτ	Δτς	τ _{max}	τ _{min}	Δτε,2	ητ
[m]	[kN]				[N/m	m ²]					[N/m	nm²]		
0,10	10,9	z	0,630	160,0	22,4	-4,5	17,0	0,12	0,758	100,0	-2,2	-16,0	13,1	0,15
		х	0,630	160,0	23,7	3,7	12,6	0,09						
9,90	10,9	Z	0,630	160,0	22,0	-4,5	16,7	0,12	0,758	100,0	-2,2	-16,0	13,1	0,15
		Х	0,630	160,0	23,7	3,7	12,6	0,09						

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 2,50 m

Schweißnahtdicke

leff - 2 * t Flansch effektive Lastausbreitungslänge ss = 116 mm $l_{eff} =$ 138 mm

statisches Moment der Schiene S_{Schiene} = 30,6 cm³

Schadensäquivalenzfaktor $\lambda_{\sigma} = 0,630$

36,0 N/mm² konstante Spannungsschwingbreite Kerbfall $\Delta \sigma_{C} =$ maximale Normalspannung $\sigma_{\text{max}} =$ 4,7 N/mm² minimale Normalspannung $\sigma_{min} =$ 0,0 N/mm²

schadensäquivalente Spannungsschwingbreite $\Delta \sigma_{E,2} =$ 3,0 N/mm² $\lambda^*(\sigma_{max}-\sigma_{min})$

ησ = $\gamma_{F,f}^*\Delta\sigma_{E,2}/(\Delta\sigma_C/\gamma_{M,f}) =$ 0,09 <= 1 Nachweis erfüllt

Zusammenfassung aller Berechnungsergebnisse

Auslastung - Tragsicherheit

Nr	Kranüberfahrt	Querschnitt	Lokale Lasteinleitung	Stegbeulen
	LG 1: Qc+Qh+HT - STR P/T	0,52	0,23	0,23
	LG 5: Qc+Qh+HS - STR P/T	0,38	0,19	0,21

Auslastung - Gebrauchstauglichkeit

Nr	Kranüberfahrt	Verfo	Verformungsnachweis Y			Verformungsnachweis Z			
		Vmax [cm]	δlim [cm]	η	Wmax δlim [cm] [cm]		η		
1	LG 12: Qc+Qh+HT - SERV LG 13: Qc+Qh+HS - SERV	0,29 0,03	1,67 1,67	0,17 0,02	0,75 0,75	2,00 2,00	0,38 0,38		

Auslastung - Ermüdung

Nr	Kranüberfahrt	Querschnitt	Lokale Lasteinleitung	Schweißnaht Schiene
5	LG 14: Qc+Qh - FAT	0,19	0,15	0,09

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Tel.: +49 173 640 4273 Herbesthal URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 77

1,5 cm

1,8 cm

2.4 Position: 2.2.2 Kranbahnträger alternativ 1Feldträger+Kragarm HEA220

 $\delta_{lim} =$

 δ_{lim}

Kranbahnträger S9+ 01/2020 (FRILO R-2020-1/P05)

Grundparameter

Bemessungsnorm Sicherheitskonzept/Lastkombinatorik Kombination ständiger Lasten Querschnittsbemessung Systemtragfähigkeit Bemessungskonzept Inspektionsintervalle Schubspannungen infolge primärer Torsion Schubspannungen infolge sekundärer Torsion


Bemessungssituation Gebrauchstauglichkeit Nachweis Absolutverformung in y mit Nachweis Absolutverformung in z mit

DIN EN 1993-6/NA-2010-12 DIN EN 1990/NA:2010-12 untereinander mit $\gamma_{G,sup}$ und $\gamma_{G,inf}$ elastisch Theorie II. Ordnung Konzept der Schadenstoleranz berücksichtigt berücksichtigt charakteristisch

System

Kranbahnträger

Maßstab 1:75

Gesamtlänge = 10,00 m Material S235

Querschnitt HE 220 A

Statische Werte

Bezeichnung	l _y	I _z	I _t	I _w	max _w	A	zs	z _M
	[cm ⁴]	[cm ⁴]	[cm ⁴]	[cm ⁶]	[cm ²]	[cm ²]	[mm]	[mm]
HE 220 A	7834,6	1996,4	100,6	202515	-109,9	84,5	-30	27
Schiene 75 %	7186,2	1986,0	70,4	200423	-109,7	79,5	-23	21
Schiene 87,5 %	7506,0	1991,2	84,7	201443	-109,8	82,0	-26	

Abmessungen

Profil HEA 220 h = 210 mmSteg (lichte Höhe) $h_1 = 152 \text{ mm}$ s = 7 mm Obergurt $b_0 = 220 \text{ mm}$ $t_o = 11 \text{ mm}$ Untergurt $b_u = 220 \text{ mm}$ $t_u = 11 mm$ Kranschiene 40/50 (mittragend)

Schweißnahtdicke aw = 10 mm

Abmessungen h = 40 mm b = 50 mmAbnutzung h_{red} 30 mm $h_{red,fat} = 35 mm$

Arnold Damm GmbH	DATE: 06.02.2020
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 78

Spannungspunkte

Punkt		O-Punkt	S-Punkt		ſ	M-Punkt	Verwölbung	Kerbfallart	k	erbfall	
	y o [mm]	z o [mm]	y s [mm]	z s [mm]	ум [mm]	Z _M [mm]	ω [cm²]		σ _x [۱	σ _z V/mm²	τ _{xz}
1	-110	-105	-110	-75	-110	-132	-109,0	Profil	160	160	100
2	0	-105	0	-75	0	-132	0,0				
3	110	-105	110	-75	110	-132	109,0	Profil	160	160	100
4	-110	105	-110	135	-110	78	109,9	Profil	160	160	100
5	0	105	0	135	0	78	0,0				
6	110	105	110	135	110	78	-109,9	Profil	160	160	100
7	-4	-76	-4	-46	-4	-103	0,0	Profil	160	160	100
8	-4	76	-4	106	-4	49	0,0	Profil	160	160	100
9	-4	0	-4	30	-4	-27	0,0				
17	4	-76	4	-46	4	-103	0,0	Profil	160	160	100
18	4	76	4	106	4	49	0,0	Profil	160	160	100
19	4	0	4	30	3	-27	0,0				
20	25	-145	25	-115	25	-172	0,0				
21	-25	-145	-25	-115	-25	-172	0,0				
22	25	-105	25	-75	25	-132	0,0	Schweißnaht	125	36	80
23	-25	-105	-25	-75	-25	-132	0,0	Schweißnaht	125	36	80
24	0	-145	0	-115	0	-172	0,0				

Quersteifen

Nr	X ₀	to	aw	Kerbfal	l,Schweißnaht	
				Steg	Flansch	
	[m]	[mm]	[mm]	[N/mm ²]	[N/mm ²]	
1	4,25	15	4	80	80	
2	8,90	10	4	80	80	

Auflager

Lagerbedingungen - Verschiebung

		Verschieb	oungen *)	Abstände						
Nr	X	V	W	У	Z					
	[m]	[kN/m]	[kN/m]	[mm]	[mm]					
1	0,00	-1	-1	0	0					
2	0,00 8,90	-1	-1	0	0					
*) -1 = starr	*) -1 = starr, 0 = frei, > 0 = elastisch									

Lagerbedingungen - Verdrehungen

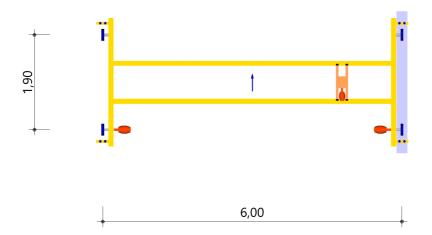
			Verwölbung*)									
Nr	x	Фх	Фу	Фz	$\Omega_{y,z}$							
	[m]	[kNm/rad]	[kNm/rad]	[kNm/rad]	[kNm ³]							
1	0,00	-1	-1	-1	0,00							
2	8,90	-1	-1	-1	0,00							
*) -1 = 9	*) -1 = starr, 0 = frei, > 0 = elastisch											

Belastung

Kransystem und Krane

Kranparameter

Kranart : Aufgesetzter Brückenlaufkran
Anzahl Krane = 1
Spannweite Kranbrücke = 6,00 m
Erdbebenlasten : nicht berücksichtigt


PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 79

Maßstab 1:75

Kran

Kran [Nr]	Bezeichnung	НС	Si	System	Spurführung	v0 [m/min]	vh [m/min]
1	ELV 1,6 t x6000 mm	2	4	IFF	Rollen außen	40,00	5,00

Kranlasten

Kran	Achse	ai	ei	Qc	Qh	Qr	Qr,min	HT	HS
[Nr]	[j]	[m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1	1 2	0,00 1,90	0,24 2,14	3,0 3,2	7,1 7,1	10,1 10,3	2,2 2,2	0,5 -1,8	0,0 -0,1

Lastdefinitionen

Art 1 = Gleichlast kN/m 5 = Dreieckslast über l kN/m 2 = Einzellast kN 6 = Trapezlast über l kN/m 3 = Einzelmoment kNm 7 = Bereichstorsionsmoment kNm/m 4 = Trapezlast kN/m 8 = Normalkraftverlauf kN/m

Lastfall 1: Eigengewicht

Art	in/um	Pli	a [m]	Pre	l [m]	ey [mm]	ez [mm]	Bemerkungen zur Last	
1	Z	0,50				0	0	Träger-g0	
Einwirk	1 z 0,16 0 -125 Schiene-g1 Einwirkungsgruppe 99 - ständig								

Lastfall 2: Kran 1 - Kraneigengewicht Qc,max

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2 2	Z Z	3,0 3,2	1,90 0,00					Qc,2,1,max,ncrane=1 Qc,2,2,max,ncrane=1

Einwirkungsgruppe 120 - Kranlastgruppe - Qc Einzellasten werden als bewegte Lasten angesetzt

Arnold Damm GmbH	DATE: 06.02.2020
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

Position: 2.2.2 Kranbanntrager alternativ
06.02.2020 Seite: 80

Lastfall 3: Kran 1 - Kranbetrieb Qh, max

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2 2	Z Z	7,1 7,1	1,90 0,00					Qh,2,1,max,ncrane=1 Qh,2,2,max,ncrane=1

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Lastfall 4: Kran 1 - Massekräfte HT

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2	У	0,5 0.07	1,90 1,90			0		HT,2,1,ncrane=1 Mx(HT,2,1,ncrane=1)
2 3	y x	-1,8 -0,26	0,00			0		HT,2,2,ncrane=1 Mx(HT,2,2,ncrane=1)

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Lastfall 5: Kran 1 - Schräglaufkräfte HS

Art	in/um	Pli	a [m]	Pre	[m]	ey [mm]	ez [mm]	Bemerkungen zur Last
2 3	y x	-0,1 -0,01	0,00 0,00			0		HS,2,2,ncrane=1 Mx(HS,2,2,ncrane=1)

Einwirkungsgruppe 121 - Kranlastgruppe - Qh Einzellasten werden als bewegte Lasten angesetzt

Berechnung nach DIN EN 1993-6/NA-2010-12

Kranfahrt 1: LG 1: Qc+Qh+HT - STR P/T

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,35	1,00	1,35
2	Kran 1 - Kraneigengewicht Qc,max	1	1,10	1,35	1,00	1,49
3	Kran 1 - Kranbetrieb Qh,max	1	1,13	1,35	1,00	1,52
4	Kran 1 - Massekräfte HT	1	1,50	1,35	1,00	2,03

Querschnittsnachweis nach Gleichung 6.1 - Theorie II. Ordnung γ_{M0} = 1,10

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
0,00	4	1	-96,7	4,3	97,0	213,6	0,45
0,10	4	1	-91,5	4,3	91,8	213,6	0,43
0,20	4	1	-86,3	4,2	86,7	213,6	0,41
0,30	4	1	-81,1	4,2	81,4	213,6	0,38
0,40	4	1	-75,9	4,2	76,2	213,6	0,36
0,50	4	1	-70,6	4,1	70,9	213,6	0,33
0,60	4	1	-65,3	4,0	65,7	213,6	0,31
0,70	4	1	-60,0	4,0	60,4	213,6	0,28
0,80	4	1	-54,7	3,9	55,1	213,6	0,26
0,90	4	1	-49,4	3,8	49,8	213,6	0,23
1,00	4	1	-44,1	3,7	44,5	213,6	0,21
1,10	4	1	-38,8	3,6	39,3	213,6	0,18
1,20	8	1	-20,3	-16,7	35,3	213,6	0,17
1,30	8	1	-17,0	-16,6	33,4	213,6	0,16

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 81

 cm^4

8,0

7,6

η

0,04

0,04

Obergurt If,eff = 1,0

0,5

0,5

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
1,40	8	1	-13,8	-16,4	31,6	213,6	0,15
1,50	9	1	-2,4	-17,7	30,8	213,6	0,14
1,60	19	1	-1,8	-17,6	30,5	213,6	0,14
1,70	19	1	-1,1	-17,4	30,1	213,6	0,14
1,80	19	1	-0,4	-17,2	29,8	213,6	0,14
1,90	9	1	0,6	-17,0	29,4	213,6	0,14
2,30	3	1	-32,9	1,1	32,9	213,6	0,15
2,50	3	1	-43,3	0,2	43,4	213,6	0,20
2,60	3	1	-41,9	0,2	41,9	213,6	0,20
3,20	4	1	39,8	1,8	39,9	213,6	0,19
4,20	4	1	48,5	2,1	48,6	213,6	0,23
4,30	4	1	49,2	2,1	49,3	213,6	0,23
4,40	4	1	49,8	2,0	50,0	213,6	0,23
4,60	4	1	45,4	1,8	45,5	213,6	0,21
7,60	4	1	-25,2	0,8	25,2	213,6	0,12
8,90	4	1	-57,0	0,6	57,0	213,6	0,27
8,90	2	1	0,6	2,3	4,0	213,6	0,02
9,00	20	1	0,7	1,8	3,3	213,6	0,02
9,20	2	1	0,3	1,7	3,0	213,6	0,01
9,40	2	1	0,2	1,5	2,5	213,6	0,01
9,60	2	1	0,1	1,3	2,2	213,6	0,01
9,70	2	1	0,05	1,2	2,1	213,6	0,01
9,90	2	1	0,01	1,1	2,0	213,6	0,01
10,00	2	1	0,0	1,1	1,9	213,6	0,01

Lokale Radlasteinleitung am Obergurt bei x = 8,80 m

 $\eta = 0.21 <= 1$ Nachweis erfüllt

Kranschiene: Höhe $h_{eff} = 30$ Breite beff = 91 mm Obergurt: mm $b_r = 50$ $t_0 = 11$

Breite Dicke mm mm $I_{rf} = 37,5$ Querschnitt: Fläche $A_{eff} = 25,0 \text{ cm}^2$ I_v effektiv: gesamt cm⁴

Schwerpunkt $e_1 = 21$ mm Kranschiene Ir = 11,3cm⁴

> Stegdicke $t_w = 7$ mm mm

effektiv $I_{eff} = 123$ Lastausbreitungslänge: gesamt $x_w = 159$ mm Unterkante Obergurt z = 18mm

х	Qr,Ed	σ oz,Ed	Toxz,Ed	τ Ed	τ	σ x,Ed	σν	η
[m]	[kN]		[N/mm ²]					
0,10	15,6	14,0	2,8	22,8	25,6	19,3	49,2	0,21
8,80	15,3	13,8	2,8	24,1	26,9	17,7	50,1	0,21

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 2,50 m

 $\eta = 0.04 <= 1$ Nachweis erfüllt

Scherfestigkeit der Schweißnaht $f_{w,Rd} = 207.8 \text{ N/mm}^2 \quad f_u * sqr(3) / (\beta_w * \gamma_{M2})$

Schweißnahtdicke 10 mm aw =

effektive Lastausbreitungslänge **s**s = 101 mm leff - 2 * t Flansch leff = 123 mm

3,6

1,0

statisches Moment der Schiene Sschiene = 22,5 cm³ 360,0 N/mm²

7,7

7,6

Zugfestigkeit des Stahls fu = Teilsicherheitsbeiwert γм2 = 1,25

2,50

4,40

15,6

15,3

Korrelationsbeiwert βw = 0,80 $V_{z,d}$ $Q_{r,d}$ **σ**w,Qr Hr,d σw,Hr Tw,Vz σVgl,d [kN] $[N/mm^2]$ [kN] $[N/mm^2]$ $[N/mm^2]$ $[N/mm^2]$ [m] [kN]

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

1,8

0,5

32,8

32,7

Königin Astrid Straße 18 Tel.: +49 173 640 4273 B-4710 Herbesthal URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 82

Nachweis auf Stegbeulen im Feld bei x = 4,30 m

Abmessungen a = 4650 mm Länge = Abstand der Quersteifen

Bemessungswerte: FEd = 15,6 kN Radlast einschließlich Schwingbeiwert

 $M_{y,Ed} = 25,92$ kNm Biegemoment $V_{z,Ed} = -3,9$ kN Querkraft

Beanspruchbarkeit des Steges: Plattenbeulen bei QuerbelastungEN1993-1-5 Abs.6 γ_{M1} = 1,10

starre Lastausbreitungslänge s = 101 mm leff-2*t_{Flansch}

Beiwerte $m_1 =$ 31,43 $m_2 =$ 0,00 Beulwert k_F = 6,00 Schlankheitsgrad Λ_F = 0,44 Abminderungsfaktor 1,00 χF 246 mm =

wirksame Lastausbreitungslänge Leff = 246 mm $l_v^*\chi_F$

Beanspruchbarkeit des Steges : Schubbeulen EN1993-1-5 Abs.5 y_{M1} = 1,10

M_{Rd} = 113,17 kNm Interaktion M/N nicht erforderlich

Schlankheitsgrad $\Lambda w = 0,014$ Abminderungsfaktor $\chi w = 1,20$

Nachweis der Längspannungen mit wirksamen Querschnittsgrößen γμο = 1,00

 $\eta_1 = 0,20 <= 1$ Weff = 563,0 cm³

Interaktion zwischen Biegung und Querlast nach EN1993-1-5 GI(7.2)

 $\eta_{7.2} = 0.14 <= 1$ $(\eta_1 + 0.8 * \eta_2)/1.4$

Interaktion zwischen Querkraft und Querlast nach DIN EN1993-1-5/NA GI(NA.7)

 $\eta DIN = 0.00 <= 1$

Nachweisführung $\eta_{max} = 0,20 \le 1$ Nachweis erfüllt

Kranfahrt 2: LG 5: Qc+Qh+HS - STR P/T

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,35	1,00	1,35
2	Kran 1 - Kraneigengewicht Qc,max	5	1,00	1,35	1,00	1,35
3	Kran 1 - Kranbetrieb Qh,max	5	1,00	1,35	1,00	1,35
5	Kran 1 - Schräglaufkräfte HS	5	1.00	1.35	1.00	1.35

Querschnittsnachweis nach Gleichung 6.1 - Theorie II. Ordnung γμο = 1,10

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
0,00	4	1	-46,3	0,3	46,3	213,6	0,22
0,90	4	1	-27,6	0,4	27,6	213,6	0,13
3,70	4	1	24,9	0,3	24,9	213,6	0,12
4,40	4	1	35,8	0,1	35,8	213,6	0,17
4,50	4	1	37,3	0,1	37,3	213,6	0,17
4,60	4	1	38,8	0,03	38,8	213,6	0,18
4,70	4	1	40,2	0,0	40,2	213,6	0,19

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 83

 $\,{\rm cm^4}$

x [m]	Pkt	Qkl	σx [N/mm²]	τ [N/mm²]	σν [N/mm²]	f _{yd} [N/mm²]	η
4,80	4	1	41,6	0,04	41,6	213,6	0,19
4,90	4	1	40,5	0,1	40,5	213,6	0,19
5,30	4	1	36,0	0,2	36,0	213,6	0,17
5,90	4	1	28,6	0,4	28,6	213,6	0,13
6,60	4	1	18,9	0,6	19,0	213,6	0,09
6,70	4	1	17,5	0,6	17,5	213,6	0,08
6,70	8	1	13,2	13,7	27,1	213,6	0,13
6,80	9	1	2,4	15,1	26,3	213,6	0,12
8,50	4	1	-55,2	0,4	55,2	213,6	0,26
8,80	4	1	-67,5	0,3	67,5	213,6	0,32
8,90	4	1	-71,6	0,2	71,6	213,6	0,34
8,90	4	1	-1,6	0,2	1,7	213,6	0,01
9,00	2	1	0,5	0,8	1,4	213,6	0,01
9,10	2	1	0,4	0,7	1,3	213,6	0,01
9,20	2	1	0,3	-0,7	1,3	213,6	0,01
9,50	20	1	0,2	0,5	0,8	213,6	0,00
9,90	20	1	0,01	0,4	0,7	213,6	0,00
10,00	22	1	0,0	0,4	0,7	213,6	0,00

Lokale Radlasteinleitung am Obergurt bei x = 0,10 m

 $\eta = 0.19 <= 1$ Nachweis erfüllt

Kranschiene: Höhe heff = 30 mm Obergurt: Breite beff = 91 mm

Querschnitt: Flache $A_{eff} = 25,0 \text{ cm}^2$ I_y effektiv: gesamt $I_{rf} = 37,5 \text{ cm}^4$ Schwerpunkt $e_1 = 21 \text{ mm}$ Kranschiene $I_r = 11,3 \text{ cm}^4$

Stegdicke $t_w = 7$ mm Obergurt $I_{f,eff} = 1,0$ Lastausbreitungslänge: effektiv $I_{eff} = 123$ mm

gesamt x_w = 159 mm Unterkante Obergurt z = 18 mm

x	Qr,Ed	σoz,Ed	Toxz,Ed	τ Ed	τμ	σx,Ed	σν	η
[m]	[kN]		[N/mm ²]					
0,10	13,9	12,5	2,5	20,1	22,6	17,6	43,8	0,19
8,80	13,6	12,3	2,5	19,9	22,4	15,6	42,4	0,18

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 4,80 m

 $\eta = 0.03 <= 1$ Nachweis erfüllt

Scherfestigkeit der Schweißnaht $f_{W,Rd} = 207.8 \text{ N/mm}^2 \quad f_u * sqr(3) / (\beta_W * \gamma_{M2})$ Schweißnahtdicke aw = 10 mm

effektive Lastausbreitungslänge ss = 101 mm leff - 2 * t Flansch leff = 123 mm

statisches Moment der Schiene Sschiene = 22,5 cm³
Zugfestigkeit des Stahls fu = 360,0 N/mm²

Teilsicherheitsbeiwert $\gamma_{M2} = 1,25$ Korrelationsbeiwert $\beta_{W} = 0,80$

x	Qr,d	σw,Qr	Hr,d	σw,Hr	V _{z,d}	τ _{w,Vz}	σνgl,d	η
[m]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]	[N/mm²]	[N/mm²]	
4,80	13,9	6,9	0,1	0,1	29,7	0,5	6,9	0,03
6,70	13,6	6,8	0,0	0,0	29,6	0,5	6,8	0,03

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 Tel.: +49 173 640 4273 B-4710 Herbesthal URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

Position: 2.2.2 Kranbahnträger alternativ
06.02.2020 Seite: 84

Nachweis auf Stegbeulen im Feld bei x = 4,30 m

Abmessungen a = 4650 mm Länge = Abstand der Quersteifen Beulfeld: b = 188 mm Breite = Steghöhe

 $t_W = 7 \text{ mm}$ Dicke = Stegdicke

Bemessungswerte: FEd = 13,9 kN Radlast einschließlich Schwingbeiwert

 $M_{\text{Y,Ed}} = 23,51 \text{ kNm}$ Biegemoment $V_{\text{Z,Ed}} = -3,5 \text{ kN}$ Querkraft

Beanspruchbarkeit des Steges: Plattenbeulen bei QuerbelastungEN1993-1-5 Abs.6 γ_{M1} = 1,10

 $F_{R,d} = 367,6 \text{ kN}$ $F_{Ed}/F_{R,d} = \eta_2 = 0,04 <= 1$

Ideale Verzweigungslast F_{cr} = 2070,1

starre Lastausbreitungslänge s = 101 mm leff-2*t_{Flansch}

Beiwerte $m_1 =$ 31,43 $m_2 =$ 0,00 Beulwert k_F = 6,00 0,44 Schlankheitsgrad Λ_F = Abminderungsfaktor 1,00 χF 246 mm =

wirksame Lastausbreitungslänge Leff = 246 mm ly*χF

Beanspruchbarkeit des Steges : Schubbeulen EN1993-1-5 Abs.5 y_{M1} = 1,10

M_{Rd} = 113,17 kNm Interaktion M/N nicht erforderlich

Schlankheitsgrad $\Lambda w = 0,014$ Abminderungsfaktor $\chi w = 1,20$

Nachweis der Längspannungen mit wirksamen Querschnittsgrößen γμ0 = 1,00

 $\eta_1 = 0.18 <= 1$ $W_{eff} = 563.0 \text{ cm}^3$

Interaktion zwischen Biegung und Querlast nach EN1993-1-5 GI(7.2)

 $\eta_{7.2} = 0.13 <= 1$ $(\eta_1 + 0.8 * \eta_2)/1.4$

Interaktion zwischen Querkraft und Querlast nach DIN EN1993-1-5/NA GI(NA.7)

 $\eta DIN = 0.00 <= 1$

Nachweisführung $\eta_{\text{max}} = 0.18 <= 1$ Nachweis erfüllt

Kranfahrt 3: LG 12: Qc+Qh+HT - SERV

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht Kran 1 - Kraneigengewicht Qc,max	12	1,00 1.00	1,00 1,00	1,00 1,00	1,00 1,00
3	Kran 1 - Kranbetrieb Qh,max	12	1,00	1,00	1,00	1,00
4	Kran 1 - Massekräfte HT	12	1,00	1,00	1,00	1,00

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 85

Verformungsnachweis

Teilsicherheitsfaktor für Widerstände 1,00 $\gamma_{M,f} =$ Nachweisstelle für horizontale Verformungen x dy =4,60 m Horizontale Verschiebung des Schubmittelpunktes $d_{y0} =$ 0,1 cm Verdrehung des Trägers um die x-Achse $\phi_x = 0,0063 \text{ rad}$ Abstand zwischen Schubmittelpunkt und Lastangriffspunkt ем, z = 133 mm Horizontale Verformung am Lastangriffspunkt $\delta_y =$ 0,2 cm Grenzwert für die horizontale Verformung $\delta_{y,lim} =$ 1,5 cm Nachweis für horizontale Verformung $\delta_y / \delta_{y,lim} =$ 0,15 Nachweisstelle für vertikale Verformungen 4,40 m $x_{dz} =$

Vertikale Verschiebung des Schubmittelpunktes $\delta_z =$ 0,5 cm Grenzwert für die vertikale Verformung $\delta_{z,lim} =$ 1,8 cm Nachweis für vertikale Verformung $\delta_z / \delta_{z,lim} =$ 0,29

Vorverformungen: parabelförmig

Nr.	min x[m]	max x[m]	max y[cm]	max z[cm]	max theta[rad]
1	0,00	8,90	1,8	0,0	0,0
2	8,90	10,00	-0,2	0,0	0,0

Kranbahnspezifische Nachweise

Nachweis auf Stegblechatmen

Steghöhe $h_w = 152 \text{ mm}$ Stegdicke 7 mm

 $h_w/t_w = 22 < 120$ Nachweis erfüllt nach EN 1993-6, Absatz 7.4:

Schwingungsbeschränkung des Unterflansches

Abstand der seitlichen Halterung L = 8,90 mTrägheitsradius $i_{z,fu} =$ 61 mm

nach EN 1993-6, Absatz 7.6: $L/i_{z,fu} = 146 < 250$ Nachweis erfüllt

Kranfahrt 4: LG 13: Qc+Qh+HS - SERV

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1	Eigengewicht		1,00	1,00	1,00	1,00
2	Kran 1 - Kraneigengewicht Qc,max	13	1,00	1,00	1,00	1,00
3	Kran 1 - Kranbetrieb Qh,max	13	1,00	1,00	1,00	1,00
5	Kran 1 - Schräglaufkräfte HS	13	1,00	1,00	1,00	1,00

Verformungsnachweis

Grenzwert für die horizontale Verformung Nachweis für horizontale Verformung δ_y	$\begin{array}{rcl} x_{dy} & = & \\ d_{y0} & = & \\ \varphi_x & = & \\ e_{M,z} & = & \\ \delta_y & = & \\ \delta_{y,lim} & = & \\ y & / & \delta_{y,lim} & = & \\ \end{array}$	4,60 0,0 0,0018 133 0,02 1,5 0,01	cm rad mm cm
Nachweisstelle für vertikale Verformungen Vertikale Verschiebung des Schubmittelpunktes Grenzwert für die vertikale Verformung Nachweis für vertikale Verformung δz	$Xdz = \delta z = \delta z$, Sz	4,40 0,5 1,8 0,29	cm

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 86

Vorverformungen: parabelförmig

Nr.	min x[m]	max x[m]	max y[cm]	max z[cm]	max theta[rad]
1 2	0,00	8,90	1,8	0,0	0,0
	8,90	10,00	-0,2	0,0	0,0

Kranbahnspezifische Nachweise

Nachweis auf Stegblechatmen

nach EN 1993-6, Absatz 7.4: $h_w/t_w = 22 < 120$ Nachweis erfüllt

Schwingungsbeschränkung des Unterflansches

Abstand der seitlichen Halterung L = 8,90 mTrägheitsradius $i_{z,fu} = 61 \text{ mm}$

nach EN 1993-6, Absatz 7.6 : $L/i_{z,fu} = 146 < 250$ Nachweis erfüllt

Kranfahrt 5: LG 14: Qc+Qh - FAT

Überlagerungsfaktoren

Nr.	Lastfall	LG	ф	γ	ψ	φ*γ*ψ
1 2 3	Eigengewicht Kran 1 - Kraneigengewicht Qc,max Kran 1 - Kranbetrieb Qh,max	14 14	1,00 1,05 1,06	1,00 1,00 1,00	1,00 1,00 1,00	1,00 1,05 1,06

Eingangswerte Ermüdungsnachweis

Teilsicherheitsbeiwerte

Teilsicherheitsfaktor für Widerstände $\gamma_{M,f} = 1,15$ Teilsicherheitsfaktor für Einwirkungen $\gamma_{F,f} = 1,00$

Ermüdungsnachweis am Querschnitt

Querschnittspunkt 4(Profil) Kerbfall σ_x 160 σ_y 160 τ_{xz} 100 bei x =8,90 m

 $\eta = 0.17 <= 1$ Nachweis erfüllt

x [m]	Nr.		λ σ λ τ	Δσ c Δτ c	σmax τmax [N/m	σmin τmin	Δσε,2 Δτε,2	ησ ητ	ηι
8,90	4	σ τ	0,500 0,660	160,0 100,0	-7,7 0,2	-54,3 0,0	23,3 0,1	0,17 0,00	0,00

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 2.2.2 Kranbahnträger alternativ

06.02.2020 Seite: 87

Lokale Radlasteinleitung am Obergurt bei x = 0,10 m

 $\eta = 0.15 <= 1$ Nachweis erfüllt

Kranschiene: Höhe heff = 35 mm Obergurt: Breite beff = 96 mm

Schwerpunkt $e_1 = 23$ mm Kranschiene $I_r = 17,9$ cm⁴
Stegdicke $t_w = 7$ mm Obergurt $I_{f,eff} = 1,1$ cm⁴

Lastausbreitungslänge: effektiv leff = 138 mm

gesamt $x_w = 174$ mm Unterkante Obergurt z = 18 mm

Werte für die Ermittlung der Spannungen infolge exzentrischer Radlast

Quersteifen Abstand α = 4,25 m Exzentrizität Radlast e_y = 13 mm Steghöhe h_w = 188 mm Kranschiene I_t = 50,0 cm⁴

 λ_{σ} Q_{r,Ed} Δσς $\Delta \sigma_{E,2}$ λ_{τ} Δτς $\Delta\tau_{E,2}$ σ_{min} σ_{max} $\eta_{\,\sigma}$ τ_{max} τ_{min} ητ $[N/mm^2]$ [m] [kN] [N/mm²]10,9 0,630 160,0 22,4 -4,5 17,0 100,0 0,15 0,10 0,12 0,758 -2,0 -15,6 13,0 Z 0,630 160,0 20,4 2,9 11,0 0,08 Х 8,80 10,9 -4,5 160,0 22,0 16,7 0,12 0,758 100,0 -2,0 -15,6 0,15 Z 0,630 13,0 0,630 160,0 20,4 2,9 11,0 0,08 х

Nachweis der Schweißnaht zwischen Schiene und Obergurt bei x = 4,80 m

Schweißnahtdicke aw = 10 mm

effektive Lastausbreitungslänge ss = 116 mm leff - 2 * t Flansch

Schadensäquivalenzfaktor $\lambda \sigma = 0,630$

konstante Spannungsschwingbreite Kerbfall $\Delta\sigma_{C} = 36,0 \text{ N/mm}^{2}$ maximale Normalspannung $\sigma_{max} = 4,7 \text{ N/mm}^{2}$ minimale Normalspannung $\sigma_{min} = 0,0 \text{ N/mm}^{2}$

schadensäquivalente Spannungsschwingbreite $\Delta \sigma_{E,2} = 3,0 \text{ N/mm}^2 \lambda^*(\sigma_{\text{max}} - \sigma_{\text{min}})$ $\gamma_{F,f}^* \Delta \sigma_{E,2}/(\Delta \sigma_{C}/\gamma_{M,f}) = \eta_{\sigma} = 0,09 <= 1 \text{ Nachweis erfüllt}$

Zusammenfassung aller Berechnungsergebnisse

Auslastung - Tragsicherheit

Nr	Kranüberfahrt	Querschnitt	Lokale Lasteinleitung	Stegbeulen
1	LG 1: Qc+Qh+HT - STR P/T	0,45	0,21	0,20
2	LG 5: Qc+Qh+HS - STR P/T	0,34	0,19	0,18

Auslastung - Gebrauchstauglichkeit

Nr	Kranüberfahrt	Verformungsnachweis Y		Verformungsnachweis Z			
		V _{max} [cm]	δlim [cm]	η	Wmax [cm]	δlim [cm]	η
	LG 12: Qc+Qh+HT - SERV LG 13: Qc+Qh+HS - SERV	0,22 0,02	1,48 1,48	0,15 0,01	0,51 0,51	1,78 1,78	0,29 0,29

Auslastung - Ermüdung

Nr	Kranüberfahrt	Querschnitt	Lokale Lasteinleitung	Schweißnaht Schiene
	5 LG 14: Qc+Qh - FAT	0,17	0,15	0,09

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

URL: aixineering.de

3. Verankerungen

3.1 Position: 3.1 Auflagerverankerung HEA220 Anschlusskräfte aus Pos.2.1

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

06.02.2020

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Ausführender Metallbau-Ruf Udo Ruf Von Plettenbergstraße 21 D - 52146 Würselen

Telefon: +49 173 9417469 info@rufmetallbau.de www.rufmetallbau.de

Ingenieurbüro AIXINEERING www.fischer.de

Königin Astrid Str. 18 B - 4710 Herbesthal Telefon: +32 87 656058 info@aixineering.be www.aixineering.be

Jan Wisniewsk

<u>Bemessungsgrundlagen</u>

Anker

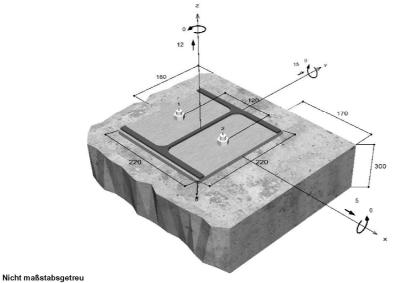
fischer Superbond-System FIS SB 390 S Ankersystem Injektionsmörtel

Befestigungselement Ankerstange FIS A M 12 x 160 A4, nicht rostender Stahl,

Festigkeitsklasse A4-70

Verankerungstiefe

Ankerbemessung in Beton nach Europäischer Technischer Bewertung ETA-12/0258, Option 1, Erteilungsdatum 23.03.2015 Bemessungsdaten


Geometrie / Lasten / Maßeinheiten

mm, kN, kNm

Bemessungswert der Einwirkungen

(inkl. Teilsicherheitsbeiwert Last)

	DATE:
erkonstruktion Kranbahnanlage Haaren 20	20004
CT: PR	PROJECT-NR:

B-4710

Königin Astrid Straße 18

Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 89

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Eingabedaten

Bohrverfahren

Belastungsart

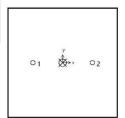
Montageart Ringspalt

ETAG 001, Technical Report TR029 Bemessungsverfahren Verankerungsgrund Normalbeton, C20/25, EN 206 Betonzustand Gerissen, Trockenes Bohrloch

Temperaturbereich Bewehrung 24 °C Langzeittemperatur, 40 °C Kurzzeittemperatur Keine oder normale Bewehrung. Gerade Randbewehrung (Ø ≥ 12 mm) mit Bügelbewehrung (a < 100 mm). Ohne

Spaltbewehrung Hammerbohren Vorsteckmontage Ringspalt nicht verfüllt Statisch oder quasi-statisch Ankerplattenposition Bündig montierte Ankerplatte

Ankerplattenmaße 220 mm x 220 mm x 8 mm Profiltyp HEA 220


Bemessungslasten *)

#	N _{Sd} kN	V _{sd,x} kN	V _{sd,y} kN	M sd,x kNm	M sd,y kNm	M ⊤,sd kNm	Belastungsart
1	12,00	5,00	15,00	0,00	0,00	0,00	Statisch oder quasi-statisch

^{*)} Incl. Teilsicherheitsbeiwert Last

Resultierende Ankerkräfte

Anker-Nr.	Zugkraft kN	Querkraft kN	Querkraft x kN	Querkraft y kN	
1	6,00	7,91	2,50	7,50	
2	6,00	7,91	2,50	7,50	

Max. Betonstauchung : Max. Betondruckspannung : Resultierende Zugkraft Resultierende Druckkraft:

0.00 % 0,0 N/mm²

12,00 kN , X/Y Position (0/0) 0,00 kN , X/Y Position (0/0)

Widerstand gegenüber Zugbeanspruchungen

Nachweis	Last kN	Tragfähigkeit kN	Ausnutzung β _N
Stahlversagen *	6,00	31,55	19,0
Kombiniertes Versagen durch Herausziehen und Betonausbruch	12,00	33,17	36,2
Betonausbruch	12,00	40,50	29,6

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 90

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

* Ungünstigster Anker

<u>Stahlversagen</u>

$$N_{Sd} \, \leq \, rac{N_{Rk,s}}{\gamma_{Ms}}$$
 ($N_{ ext{Rd,s}}$)

KN KN KN %	N _{Rk,s} kN	YMs	kN	N sa kN	PN,s %
------------	-------------------------	-----	----	-------------------	-----------

Anker-Nr.	β _{N,s} %	Gruppe Nr.	Maßgebendes Beta
1	19,0	1	β _{N,s;1}
2	19,0	2	β _{N,s,2}

Kombiniertes Versagen durch Herausziehen und Betonausbruch

$$N_{Sd} \, \leq \, rac{N_{Rk,p}}{\gamma_{Mp}}$$
 ($N_{ ext{Rd,p}}$)

GI. (5.2)

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{ec,Np} \cdot \Psi_{rc,Np}$$

$$137.776 mm^{2}$$

$$N_{Rk,p} = 33,93kN \cdot \frac{137.776mm^2}{99.856mm^2} \cdot 1,000 \cdot 1,063 \cdot 1,000 \cdot 1,000 = 49,76kN$$

$$N_{Rk,p}^0 = \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = \pi \cdot 12mm \cdot 120mm \cdot 7,5N/mm^2 = 33,93kN$$

$$s_{cr,Np}=min\Big(20\cdot d\cdot \Big(rac{ au_{Rk,ucr}}{7.5}\Big)^{0.5};\,3\cdot h_{ef}\Big)$$

$$s_{cr,Np} = min \Big(20 \cdot 12mm \cdot \Big(\frac{13,0N/mm^2}{7,5} \Big)^{0.5}; \ 3 \cdot 120mm \Big) \ = \ 316mm$$

$$c_{cr,Np} = rac{S_{cr,Np}}{2} = rac{316mm}{2} = 158mm$$
 GL (5.2d)

$$\Psi^0_{g,Np} = \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{d \cdot au_{Rk}}{k \cdot \sqrt{h_{ef} \cdot f_{ck,cube}}}\right)^{1.5}$$
 GI. (5.2g)

$$\Psi^0_{g,Np} \; = \; \sqrt{2} - \left(\sqrt{2} - 1\right) \cdot \left(\frac{12mm \cdot 7,5N/mm^2}{2,3 \cdot \sqrt{120mm \cdot 25,0N/mm^2}}\right)^{1,5} \; = \; 1,164 \; \geq \; 1$$

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

URL: aixineering.de

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

$$\Psi_{ec,Np} = \frac{1}{1 + \frac{2c_u}{s_{cr,Np}}} = \Psi_{ec,Npx} \cdot \Psi_{ec,Npy} = 1,000 \cdot 1,000 = 1,000 \le 1$$

$$\Psi_{ec,Npx} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{316mm}} \, = \, 1,000 \, \leq \, 1 \qquad \Psi_{ec,Npy} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{316mm}} \, = \, 1,000 \, \leq \, 1$$

$$\Psi_{rc,Np} = 1{,}000$$

N _{Rk,p}	ү мр	N _{Rd,p}	N sd	β _{N,p}
kN		kN	kN	%
49,76	1,50	33,17	12,00	36,2

Anker-Nr.	β _{N,p} %	Gruppe Nr.	Maßgebendes Beta
1.2	36.2	1	β _{N,p:1}

Betonausbruch

$$N_{Sd} \, \leq \, rac{N_{Rk,c}}{\gamma_{Mc}}$$
 ($N_{ ext{Rd,c}}$)

GL (5.3)

$$N_{Rk,c} \; = \; N_{Rk,c}^0 \cdot rac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N}$$

$$\mathbf{v}_{Rk,c} = \mathbf{v}_{Rk,c} \cdot \frac{1}{A_{c,N}^0} \cdot \mathbf{\Psi}_{s,N} \cdot \mathbf{\Psi}_{rc,N} \cdot \mathbf{\Psi}_{cc,N}$$

$$N_{Rk,c} \ = \ 47,32kN \cdot \frac{169.200mm^2}{129.600mm^2} \cdot 0,983 \cdot 1,000 \cdot 1,000 \ = \ 60,75kN$$

$$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1.5} = 7.2 \cdot \sqrt{25.0N/mm^2} \cdot \left(120mm\right)^{1.5} = 47.32kN$$
 GL (5.3a)

$$\Psi_{s,N} = 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} = 0.7 + 0.3 \cdot \frac{170mm}{180mm} = 0.983 \leq 1$$
 GL (5.3c)

$$\Psi_{re,N} = 1{,}000$$
 GI. (5.3d)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_a}{s_{cr,N}}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1,000 \cdot 1,000 = 1,000 \le 1$$

$$\Psi_{ec,Nx} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{360mm}} \, = \, 1,000 \, \leq \, 1 \qquad \Psi_{ec,Ny} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{360mm}} \, = \, 1,000 \, \leq \, 1$$

N _{Rk,c} KN	У Мс	N _{Rd,c} kN	N sa kN	β _{N,c} %
60,75	1,50	40,50	12,00	29,6

		59	
Anker-Nr.	β _{N,c} %	Gruppe Nr.	Maßgebendes Beta
1, 2	29,6	1	β _{N,c;1}

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

URL: aixineering.de

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Widerstand gegenüber Querbeanspruchungen

Nachweis	Last kN	Tragfähigkeit kN	Ausnutzung β _V
Stahlversagen ohne Hebelarm *	7,91	19,23	41,1
Rückseitiger Betonausbruch	15,81	66,35	23,8
Betonkantenbruch	15,81	28,85	54,8

^{*} Ungünstigster Anker

Stahlversagen ohne Hebelarm

$$V_{Sd} \, \leq \, rac{V_{Rk,s}}{\gamma_{Ms}}$$
 ($V_{ exttt{Rd,s}}$)

V _{Rk,s}	ΥMs	V _{Rd,s}	V _{Sd}	β _{Vs}
kN		kN	kN	%
30,00	1,56	19,23	7,91	41,1

Anker-Nr.	β _{Vs} %	Gruppe Nr.	Maßgebendes Beta
1	41,1	1	β _{Vs;1}
2	41,1	2	β _{Vs:2}

Rückseitiger Betonausbruch

$$V_{Sd} \, \leq \, rac{V_{Rk,cp}}{\gamma_{Mcp}}$$
 ($V_{ ext{Rd,cp}}$)

$$V_{Rk,cp} = k \cdot N_{Rk,p} = 2 \cdot 49,76kN = 99,52kN$$

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{rc,Np} \cdot \Psi_{rc,Np}$$

$$N_{Rk,p} = 33,93kN \cdot \frac{137.776mm^{2}}{99.856mm^{2}} \cdot 1,000 \cdot 1,063 \cdot 1,000 \cdot 1,000 = 49,76kN$$

$$N_{Rk,p}^{0} = \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = \pi \cdot 12mm \cdot 120mm \cdot 7,5N/mm^{2} = 33,93kN$$

$$\Psi_{s,Np} = min(1; 0,7 + 0,3 \cdot \frac{c}{c_{cr,Np}}) = min(1; 0,7 + 0,3 \cdot \frac{170mm}{158mm}) = 1,000 \le 1$$

$$\Psi_{g,Np} = \Psi_{g,Np}^{0} - \sqrt{\frac{s}{s_{cr,Np}}} \cdot (\Psi_{g,Np}^{0} - 1)$$

$$\Psi_{g,Np} = 1,164 - \sqrt{\frac{120mm}{316mm}} \cdot (1,164 - 1) = 1,063 \ge 1$$

$$\Psi^0_{g,Np} \ = \ \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{d \cdot \tau_{Rk}}{k \cdot \sqrt{h_{ef} \cdot f_{ck,cabe}}}\right)^{1.5}$$
 GL (5.2g)

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18

Tel.: +49 173 640 4273 B-4710 Herbesthal URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 93

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

$$\Psi^0_{g,Np} \; = \; \sqrt{2} \, - \, \left(\sqrt{2} \, - \, 1\right) \cdot \left(\frac{12mm \cdot 7,5N/mm^2}{2,3 \cdot \sqrt{120mm \cdot 25,0N/mm^2}}\right)^{1,5} \; = \; 1,164 \; \geq \; 1$$

$$\Psi_{re,Np} = 1{,}000$$

V _{Rk,cp} kN	У Мср	V _{Rd,cp} kN	V _{sd} kN	β _{V,cp} %
99,52	1,50	66,35	15,81	23,8

Anker-Nr.	βν,cp %	Gruppe Nr.	Maßgebendes Beta
1, 2	23,8	1	βv,cp;1

Betonkantenbruch

$$V_{Sd} \leq rac{V_{Rk,c}}{\gamma_{Mc}}$$
 ($V_{ ext{Rd,c}}$)

$$V_{Rk,c} \ = \ V_{Rk,c}^0 \cdot rac{A_{c,V}}{A_{c,V}^0} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{lpha,V} \cdot \Psi_{cc,V} \cdot \Psi_{rc,V}$$

$$V_{Rk,c} \ = \ 32,10kN \cdot \frac{151.200mm^2}{145.800mm^2} \cdot 0,889 \cdot 1,000 \cdot 1,045 \cdot 1,000 \cdot 1,400 \ = \ 43,28kN \cdot 1,000 \cdot$$

$$V^0_{Rk,c} = k_1 \cdot d^{lpha} \cdot h^{eta}_{ef} \cdot \sqrt{f_{ck,cube}} \cdot c^{1,5}_1$$

$$V_{Rk,c}^0 \, = \, 1.7 \cdot \left(12mm\right)^{0.073} \cdot \left(96mm\right)^{0.058} \cdot \sqrt{25,0N/mm^2} \cdot \left(180mm\right)^{1.5} \, = \, 32,10kN^{-1} \cdot \left(180m$$

$$\alpha \ = \ 0.1 \cdot \sqrt{\frac{h_{ef}}{c_1}} \ = \ 0.1 \cdot \sqrt{\frac{96mm}{180mm}} \ = \ 0.073 \qquad \beta \ = \ 0.1 \cdot \left(\frac{d}{c_1}\right)^{0.2} \ = \ 0.1 \cdot \left(\frac{12mm}{180mm}\right)^{0.2} \ = \ 0.058 \qquad \qquad ^{\mathrm{GL.(5.8b/c)}}$$

$$h_{ef} = min\Big(h_{ef}; 8 \cdot d\Big) = min\Big(120mm; 8 \cdot 12mm\Big) = 96mm$$

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1,5c_1} = 0.7 + 0.3 \cdot \frac{170mm}{1.5 \cdot 180mm} = 0.889 \leq 1$$
 GL (5.8e)

$$\Psi_{h,V} = max\Big(1; \sqrt{\frac{1,5c_1}{h}}\Big) = max\Big(1; \sqrt{\frac{1,5\cdot 180mm}{300mm}}\Big) = 1,000 \ge 1$$

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos{\alpha_{V}}\right)^{2} + \left(\frac{\sin{\alpha_{V}}}{2.5}\right)^{2}}} = \sqrt{\frac{1}{\left(\cos{18.4}\right)^{2} + \left(\frac{\sin{18.4}}{2.5}\right)^{2}}} = 1,045 \geq 1$$

$$\Psi_{ec,V}=rac{1}{1+rac{2\,c_c}{3\,c_1}}=rac{1}{1+rac{2\,\cdot\,0mm}{3\,\cdot\,180mm}}=\,1,\!000\,\leq\,1$$
 GL (5.8h)

$$\Psi_{re,V} = 1,400$$

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Herbesthal

traße 18 Tel.: +49 173 640 4273

URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 94

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

V _{Rk,c}	ү мс	V _{Rd,c}	V _{Sd}	βν,c
kN		kN	kN	%
43,28	1,50	28,85	15,81	54,8

Anker-Nr.	β ν,c %	Gruppe Nr.	Maßgebendes Beta
1, 2	54,8	1	βv.c.1

Ausnutzung für Zug- und Querlasten

Zuglasten	Ausnutzung βN %	Querlasten	Ausnutzung βγ %
Stahlversagen *	19,0	Stahlversagen ohne Hebelarm *	41,1
Kombiniertes Versagen durch Herausziehen	36,2	Rückseitiger Betonausbruch	23,8
und Betonausbruch		Betonkantenbruch	54.8
Betonausbruch	29,6		

^{*} Ungünstigster Anker

Ausnutzung für kombinierte Zug- und Querbelastung

$\beta_{N} = \beta_{N,p;1} = 0.36 \le 1$ $\beta_{V} = \beta_{V,e;1} = 0.55 \le 1$ $\beta_{N}^{1,5} + \beta_{V}^{1,5} = \beta_{N,p;1}^{1,5} + \beta_{V,e;1}^{1,5} = 0.62 \le 1$	V	Nachweis erfolgreich	GI. (5.9a) GI. (5.9b) GI. (5.10)

Angaben zur Ankerplatte

Ankerplattendetails

Vom Anwender ohne Nachweis festgelegte Ankerplattendicke

t = 8 mm

ofiltyp HEA 220

Technische Hinweise

Wenn der Randabstand eines Ankers kleiner als der charakteristische Randabstand C_{Cr,N} = 180 mm (Bemessungsverfahren A) ist, ist eine Längsbewehrung mit einem Durchmesser von d = 6mm im Bereich der Verankerungstiefe des Ankers erforderlich.

Bei der Bemessung wurde vorausgesetzt, dass die Ankerplatte unter den einwirkenden Schnittkräften eben bleibt. Deshalb muss sie ausreichend steif sein. Die in C-Fix enthaltene Ankerplattenbemessung basiert auf einem Spannungsnachweis, erlaubt aber keine direkte Aussage über die Plattensteifigkeit.

Die Lastweiterleitung im Beton ist für den Grenzzustand der Tragfähigkeit sowie den Grenzzustand der Gebrauchstauglichkeit nachzuweisen. Hierfür sind die erforderlichen Nachweise für das Bauteil incl. den Ankerlasten zu führen. Die weitergehenden Bestimmungen des Bemessungsverfahrens hierfür sind zu beachten. Die Nachweise gelten nur für die Kaltbemessung.

Allgemeine Hinweise

Sämtliche in den Programmen enthaltenen Informationen und Daten beziehen sich ausschließlich auf die Verwendung von fischer-Produkten und basieren auf den Grundsätzen, Formeln und Sicherheitsbestimmungen gem. den technischen Anweisungen und Bedienungs-, Setz und Montageanleitungen usw. von fischer, die vom Anwender genau eingehalten werden müssen. Sämtliche enthaltenen Werte sind Durchschnittswerte; daher sind vor Anwendung des jeweiligen fischer-Produkts stets einsatzspezifische Tests durchzuführen. Die Ergebnisse der mittels der Software durchgeführten Berechnungen beruhen maßgeblich auf den von Ihnen einzugebenden Daten. Sie tragen daher die alleinige Verantwortung für die Fehlerfreiheit, Vollständigkeit und Relevanz der von Ihnen einzugebenden Daten. Sie sind weiterhin alleine dafür

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 95

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

verantwortlich, die erhaltenen Ergebnisse der Berechnung vor der Verwendung für Ihre spezifische(n) Anlage(n) durch einen Fachmann überprüfen und freigeben zu lassen, insbesondere hinsichtlich der Konformität mit geltenden Normen und Zulassungen. Das Bemessungsprogramm dient lediglich als Hilfsmittel zur Auslegung von Normen und Zulassungen ohne jegliche Gewährleistung auf Fehlerfreiheit, Richtigkeit und Relevanz der Ergebnisse oder Eignung für eine bestimmte Anwendung.

Sie haben alle erforderlichen und zumutbaren Maßnahmen zu ergreifen, um Schäden durch das Bemessungsprogramm zu verhindern oder zu begrenzen. Insbesondere müssen Sie für die regelmäßige Sicherung von Programmen und Daten sorgen sowie regelmäßig ggf. von fischer angebotene Updates des Bemessungsprogramms durchführen. Sofern Sie nicht die automatische Update-Funktion der Software nutzen, müssen Sie durch manuelle Updates über die fischer Internetseite sicherstellen, dass Sie jeweils die aktuelle und somit gültige Version des Bemessungsprogramms verwenden. Soweit Sie diese Verpflichtung schuldhaft verletzen, haftet fischer nicht für daraus entstehende Folgen, insbesondere nicht für die Wiederbeschaffung verlorener oder beschädigter Daten oder Programme.

IENT: DATE:	
nterkonstruktion Kranbahnanlage Haaren 20004	ļ.
OJECT: PROJECT:	Γ-NR:

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

06.02.2020 Seite: 96

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Angaben zur Montage

<u>Anker</u>

fischer Superbond-System FIS SB 390 S (auch in weiteren Kartuschengrößen verfügbar) Ankersystem Injektionsmörtel Befestigungselement Ankerstange FIS A M 12 x 160 A4,

nicht rostender Stahl, Festigkeitsklasse A4-70

Zubehör Statikmischer FIS MR rot

Auspressgerät FIS DM S Druckluft-Reinigungsgerät Ölfreie Druckluft, min. 6 bar Reinigungsbürste BS 14 Hammerbohrer SDS Plus IV 14/150/210

FIS SB 1500 S Alternative Kartuschen FIS SB 585 S

FIS SB 390 High Speed S Die dargestellten Kartuschen können alternativ zu den hervorgehobenen Kartuschen mit der gleichen

Zulassungsnummer verwendet werden

Art.-Nr. 518830

Art.-Nr. 90451

Art.-Nr. 96448

Art.-Nr. 511118 Art.-Nr. 93286 Bauseits Art.-Nr. 78180 Art.-Nr. 504153

Art.-Nr. 519453 Art.-Nr. 520526 Art.-Nr. 523300

Gewindegröße M 12 Bohrlochdurchmesser $d_0 = 14 \text{ mm}$ Bohrlochtiefe $h_1 = 120 \text{ mm}$ h_{ef} = 120 mm Verankerungstiefe Bohrverfahren Hammerbohren Bohrlochreinigung

2 x mit Druckluft ausblasen, 2 x bürsten, 2 x mit Druckluft ausblasen Vorsteckmontage Ringspalt nicht verfüllt

Ringspalt Maximales Anzugsmoment Tinst,max = 40,0 Nm Schlüsselweite SW 19 mm

Ankerplattendicke t = 8 mmGesamte Befestigungsdicket_{fix} = 8 mm

Tfix.max

Montageart

Mörtelvolumen je Bohrloch 10 ml/5 Skalenteile

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 3.1 Auflagerverankerung HEA220

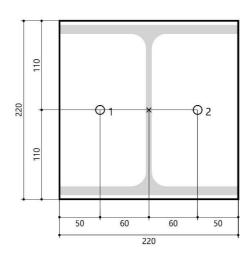
06.02.2020 Seite: 97

Die Weiterleitung der Auflagekräfte in die Bodenplatte / Baugrund ist nicht Gegenstand dieser statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Ankerplattendetails

Material der Ankerplatte Ankerplattendicke Durchgangsloch im Anbauteil S 235 (St 37) t = 8 mm d_f=14 mm


<u>Anbauteil</u>

Profiltyp

HEA 220

Ankerkoordinaten

Anker-Nr.	x mm	y mm
1	-60	0
2	60	0

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

B-4710

Herbesthal

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 98

3.2 Position: 3.2 Auflagerverankerung QRO100x4 Anschlusskräfte aus Pos.2.1

URL: aixineering.de

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Ausführender Metallbau-Ruf Udo Ruf Von Plettenbergstraße 21 D - 52146 Würselen

Telefon: +49 173 9417469 info@rufmetallbau.de www.rufmetallbau.de

Ingenieurbüro AIXINEERING Jan Wisniewski Königin Astrid Str. 18 B - 4710 Herbesthal

Telefon: +32 87 656058 info@aixineering.be www.aixineering.be

www.fischer.de

<u>Bemessungsgrundlagen</u>

Anker

fischer Superbond-System FIS SB 390 S Ankersystem Injektionsmörtel

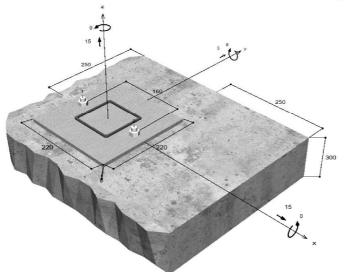
Befestigungselement Ankerstange FIS A M 12 x 160 A4, nicht rostender Stahl,

Festigkeitsklasse A4-70

Verankerungstiefe

Ankerbemessung in Beton nach Europäischer Technischer Bewertung ETA-12/0258, Option 1, Erteilungsdatum 23.03.2015 Bemessungsdaten

Geometrie / Lasten / Maßeinheiten


mm, kN, kNm

Bemessungswert der Einwirkungen

(inkl. Teilsicherheitsbeiwert Last)

Nicht maßstabsgetreu

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 99

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Eingabedaten

ETAG 001, Technical Report TR029 Bemessungsverfahren Verankerungsgrund Normalbeton, C20/25, EN 206 Betonzustand Gerissen, Trockenes Bohrloch

Temperaturbereich Bewehrung 24 °C Langzeittemperatur, 40 °C Kurzzeittemperatur Keine oder normale Bewehrung. Gerade Randbewehrung (Ø ≥ 12 mm) mit Bügelbewehrung (a < 100 mm). Ohne

Spaltbewehrung

Bohrverfahren Hammerbohren Vorsteckmontage Montageart Ringspalt Ringspalt nicht verfüllt Belastungsart Statisch oder quasi-statisch Ankerplattenposition Bündig montierte Ankerplatte Ankerplattenmaße

220 mm x 220 mm x 8 mm Quadratische Hohlprofile warmgefertigt (QSH 100x4) Profiltyp

Bemessungslasten *)

#	N sd kN	V _{sd,x} kN	V _{sd,y} kN	M sd,x kNm	M sd,y kNm	M ⊤,sd kNm	Belastungsart
1	15,00	15,00	5,00	0,00	0,00	0,00	Statisch oder quasi-statisch

^{*)} Incl. Teilsicherheitsbeiwert Last

Resultierende Ankerkräfte

Anker-Nr.	Zugkraft kN	Querkraft kN	Querkraft x kN	Querkraft y kN
1	7,50	7,91	7,50	2,50
2	7,50	7,91	7,50	2,50

Max. Betonstauchung : Max. Betondruckspannung : 0.00 % 0,0 N/mm²

15,00 kN , X/Y Position (0/0) 0,00 kN , X/Y Position (0/0) Resultierende Zugkraft Resultierende Druckkraft:

Widerstand gegenüber Zugbeanspruchungen

Nachweis	Last kN	Tragfähigkeit kN	Ausnutzung β _N
Stahlversagen *	7,50	31,55	23,8
Kombiniertes Versagen durch Herausziehen und Betonausbruch	15,00	35,68	42,0
Betonausbruch	15,00	45,57	32,9

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 100

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

* Ungünstigster Anker

<u>Stahlversagen</u>

$$N_{Sd} \, \leq \, rac{N_{Rk,s}}{\gamma_{Ms}}$$
 ($N_{ ext{Rd,s}}$)

N _{Rk,s}	ΥMs	N _{Rd,s}	N _{Sd}	β _{N,s}
kN		kN	kN	%
59,00	1,87	31,55	7,50	23,8

Anker-Nr.	β _{N,s} %	Gruppe Nr.	Maßgebendes Beta
1	23,8	1	β _{N,s;1}
2	23,8	2	β _{N,s,2}

Kombiniertes Versagen durch Herausziehen und Betonausbruch

$$N_{Sd} \, \leq \, rac{N_{Rk,p}}{\gamma_{Mp}}$$
 ($N_{ exttt{Rd,p}}$)

$$N_{Rk,p} = N_{Rk,p}^0 \cdot \frac{A_{p,N}}{A_{p,N}^0} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{cc,Np} \cdot \Psi_{re,Np}$$

$$N_{Rk,p} \ = \ 33,93kN \cdot \frac{150.416mm^2}{99.856mm^2} \cdot 1,000 \cdot 1,047 \cdot 1,000 \cdot 1,000 \ = \ 53,53kN \cdot 1,000 \cdot$$

$$N_{Rk,p}^0 = \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = \pi \cdot 12mm \cdot 120mm \cdot 7,5N/mm^2 = 33,93kN$$

GI. (5.2)

$$s_{cr,Np} \ = \ \min \biggl(20 \cdot d \cdot \biggl(\frac{\tau_{Rk,ucr}}{7,5} \biggr)^{0,5}; \ 3 \cdot h_{ef} \biggr)$$

$$s_{cr,Np} \; = \; min \Big(20 \cdot 12mm \cdot \Big(\frac{13,0N/mm^2}{7,5} \Big)^{0.5}; \; 3 \cdot 120mm \Big) \; = \; 316mm$$

$$c_{cr,Np} = \frac{S_{cr,Np}}{2} = \frac{316mm}{2} = 158mm$$

$$\Psi_{s,\mathit{Np}} \; = \; \min \Big(1; \; 0.7 + 0.3 \cdot \frac{c}{c_{\mathit{cr},\mathit{Np}}} \Big) \; \; = \; \min \Big(1; \; 0.7 + 0.3 \cdot \frac{250mm}{158mm} \Big) \; = \; 1,000 \; \leq \; 1$$

$$\begin{split} \Psi_{s,Np} &= min \Big(1; \ 0.7 + 0.3 \cdot \frac{1}{c_{cr,Np}} \Big) = min \Big(1; \ 0.7 + 0.3 \cdot \frac{1}{158mm} \Big) = 1,000 \le 1 \\ \Psi_{g,Np} &= \Psi_{g,Np}^0 - \sqrt{\frac{s}{s_{cr,Np}}} \cdot \left(\Psi_{g,Np}^0 - 1\right) = 1,164 - \sqrt{\frac{160mm}{316mm}} \cdot \left(1,164 - 1\right) = 1,047 \ge 1 \end{split}$$

$$\Psi^0_{g,Np} = \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{d \cdot \tau_{Rk}}{k \cdot \sqrt{h_{ef} \cdot f_{ck,cube}}}\right)^{1.5}$$

$$\Psi^0_{g,Np} \; = \; \sqrt{2} \, - \, \left(\sqrt{2} \, - \, 1 \right) \cdot \left(\frac{12mm \cdot 7,5N/mm^2}{2,3 \cdot \sqrt{120mm \cdot 25,0N/mm^2}} \right)^{1,5} \; = \; 1,164 \; \geq \; 1$$

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18

B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de

Position: 3.2 Auflagerverankerung QRO100x4

Unterkonstruktion Kranbahnanlage Haaren

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

$$\Psi_{ec,Np} = \frac{1}{1 + \frac{2c_u}{s_{cr,Np}}} = \Psi_{ec,Npx} \cdot \Psi_{ec,Npy} = 1,000 \cdot 1,000 = 1,000 \le 1$$

$$\Psi_{ec,Npx} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{316mm}} \, = \, 1,000 \, \leq \, 1 \qquad \Psi_{ec,Npy} \, = \, \frac{1}{1 + \frac{2 \cdot 0mm}{316mm}} \, = \, 1,000 \, \leq \, 1$$

$$\Psi_{rc,Np} = 1{,}000$$

N _{Rk,p}	ү мр	N _{Rd,p}	N sd	β _{N,p}
kN		kN	kN	%
53,53	1,50	35,68	15,00	42,0

Anker-Nr.	β _{N,p} %	Gruppe Nr.	Maßgebendes Beta
1. 2	42.0	1	β _{N.p:1}

Betonausbruch

$$N_{Sd} \, \leq \, rac{N_{Rk,c}}{\gamma_{Mc}}$$
 ($N_{ ext{Rd,c}}$)

$$N_{Rk,c} = N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{rc,N} \cdot \Psi_{ec,N}$$
 (5.3)

$$N_{Rk,c} \ = \ 47,32kN \cdot \frac{187.200mm^2}{129.600mm^2} \cdot 1,000 \cdot 1,000 \cdot 1,000 \ = \ 68,36kN$$

$$N_{Rk,c}^0 \ = \ k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1.5} \ = \ 7, 2 \cdot \sqrt{25,0N/mm^2} \cdot \left(120mm\right)^{1.5} \ = \ 47,32kN \tag{5.3a}$$

$$\Psi_{rc,N} = 1{,}000$$

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2c_n}{2c_n}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} \ = \ 1,000 \cdot 1,000 \ = \ 1,000 \ \le \ 1$$

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{360mm}} = 1,000 \le 1$$
 $\Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{360mm}} = 1,000 \le 1$

N _{Rk,c}	Yмс	N _{Rd,c}	N sd	β _{N,c}
kN		kN	kN	%
68,36	1,50	45,57	15,00	32,9

Anker-Nr.	β _{N,c} %	Gruppe Nr.	Maßgebendes Beta
1, 2	32,9	1	βN,c;1

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 102

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Widerstand gegenüber Querbeanspruchungen

Nachweis	Last kN	Tragfähigkeit kN	Ausnutzung β _V
Stahlversagen ohne Hebelarm *	7,91	19,23	41,1
Rückseitiger Betonausbruch	15,81	71,37	22,2
Betonkantenbruch	15,21	31,83	47,8

^{*} Ungünstigster Anker

Stahlversagen ohne Hebelarm

$$V_{Sd} \, \leq \, rac{V_{Rk,s}}{\gamma_{Ms}}$$
 ($V_{ exttt{Rd,s}}$)

V _{Rk,s}	ΥMs	V _{Rd,s}	V _{Sd}	β _{Vs}
kN		kN	kN	%
30,00	1,56	19,23	7,91	41,1

Anker-Nr.	β _{Vs} %	Gruppe Nr.	Maßgebendes Beta
1	41,1	1	β _{Vs;1}
2	41,1	2	β _{Vs:2}

Rückseitiger Betonausbruch

 $\Psi^0_{g,Np} \ = \ \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(rac{d \cdot au_{Rk}}{k \cdot \sqrt{h_{ef} \cdot f_{ek,cube}}}
ight)^{1,5}$

$$V_{Sd} \, \leq \, rac{V_{Rk,cp}}{\gamma_{Mcp}}$$
 ($V_{ ext{Rd,cp}}$)

GI. (5.2g)

$$V_{Rk,cp} = k \cdot N_{Rk,p} = 2 \cdot 53,53kN = 107,05kN$$

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{cc,Np} \cdot \Psi_{rc,Np}$$

$$N_{Rk,p} = 33,93kN \cdot \frac{150.416mm^{2}}{99.856mm^{2}} \cdot 1,000 \cdot 1,047 \cdot 1,000 \cdot 1,000 = 53,53kN$$

$$N_{Rk,p}^{0} = \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = \pi \cdot 12mm \cdot 120mm \cdot 7,5N/mm^{2} = 33,93kN$$

$$\Psi_{s,Np} = min(1; 0,7 + 0,3 \cdot \frac{c}{c_{cr,Np}}) = min(1; 0,7 + 0,3 \cdot \frac{250mm}{158mm}) = 1,000 \le 1$$

$$\Psi_{g,Np} = \Psi_{g,Np}^{0} - \sqrt{\frac{s}{s_{cr,Np}}} \cdot (\Psi_{g,Np}^{0} - 1)$$

$$\Psi_{g,Np} = 1,164 - \sqrt{\frac{160mm}{316mm}} \cdot (1,164 - 1) = 1,047 \ge 1$$

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18 B-4710

Tel.: +49 173 640 4273 Herbesthal URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 103

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

$$\Psi^0_{g,Np} \; = \; \sqrt{2} \, - \, \left(\sqrt{2} \, - \, 1\right) \cdot \left(\frac{12mm \cdot 7,5N/mm^2}{2,3 \cdot \sqrt{120mm \cdot 25,0N/mm^2}}\right)^{1,5} \; = \; 1,164 \; \geq \; 1$$

$$\Psi_{\epsilon c,Np} = rac{1}{1 + rac{2e_u}{s_{rec}Npx}} = \Psi_{\epsilon c,Npx} \cdot \Psi_{\epsilon c,Npy} = 1,000 \cdot 1,000 = 1,000 \leq 1$$

$$\Psi_{re,Np} = 1{,}000$$

V _{Rk,cp} kN	Yмср	V _{Rd,cp} kN	V _{sd} kN	β _{V,cp} %
107,05	1,50	71,37	15,81	22,2

Anker-Nr.	β γ.cp %	Gruppe Nr.	Maßgebendes Beta
1, 2	22,2	1	βv,cp;1

Betonkantenbruch

$$V_{Sd} \, \leq \, rac{V_{Rk,c}}{\gamma_{Mc}}$$
 ($V_{ ext{Rd,c}}$)

$$V_{Rk,c} \ = \ V_{Rk,c}^0 \cdot rac{A_{c,V}}{A_{c,V}^0} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{lpha,V} \cdot \Psi_{cc,V} \cdot \Psi_{rc,V}$$

$$V_{Rk,c} \ = \ 50,26kN \cdot \frac{187.500mm^2}{281.250mm^2} \cdot 0,900 \cdot 1,118 \cdot 1,012 \cdot 1,000 \cdot 1,400 \ = \ 47,74kN^2 \cdot 1,000 \cdot 1,000$$

$$V^0_{Rk,c} = k_1 \cdot d^{lpha} \cdot h^{eta}_{ef} \cdot \sqrt{f_{ck,cube}} \cdot c^{1.5}_1$$

$$V_{Rk,c}^{0} = 1.7 \cdot \left(12mm\right)^{0.062} \cdot \left(96mm\right)^{0.054} \cdot \sqrt{25.0N/mm^2} \cdot \left(250mm\right)^{1.5} = 50.26kN$$

$$\alpha \ = \ 0.1 \cdot \sqrt{\frac{h_{ef}}{c_1}} \ = \ 0.1 \cdot \sqrt{\frac{96mm}{250mm}} \ = \ 0.062 \qquad \beta \ = \ 0.1 \cdot \left(\frac{d}{c_1}\right)^{0.2} \ = \ 0.1 \cdot \left(\frac{12mm}{250mm}\right)^{0.2} \ = \ 0.054 \qquad \qquad ^{\mathrm{GL.(5.8b/c)}}$$

$$h_{ef} = min\Big(h_{ef}; 8 \cdot d\Big) = min\Big(120mm; 8 \cdot 12mm\Big) = 96mm$$

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{250mm}{1.5 \cdot 250mm} = 0.900 \leq 1$$
 GL (5.8e)

$$\Psi_{h,V} = \sqrt{\frac{1,5c_1}{h}} = \sqrt{\frac{1,5\cdot 250mm}{300mm}} = 1,118 \ge 1$$

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos{\alpha_{V}}\right)^{2} + \left(\frac{\sin{\alpha_{V}}}{2.5}\right)^{2}}} = \sqrt{\frac{1}{\left(\cos{9.5}\right)^{2} + \left(\frac{\sin{9.5}}{2.5}\right)^{2}}} = 1,012 \geq 1$$

$$\Psi_{ec,V} = rac{1}{1 + rac{2 \; c_c}{3 \; c_1}} = rac{1}{1 + rac{2 \; \cdot \; 0mm}{3 \; \cdot \; 250mm}} = 1{,}000 \; \le \; 1$$
 GL (5.8h)

$$\Psi_{re,V} = 1,400$$

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020

Königin Astrid Straße 18

Tel.: +49 173 640 4273

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

B-4710 Herbesthal URL: aixineering.de

06.02.2020 Seite: 104

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

V _{Rk,c}	ү мс	V _{Rd,c}	V _{Sd}	β _{V,c}
kN		kN	kN	%
47,74	1,50	31,83	15,21	47,8

Anker-Nr.	β _{V,c} %	Gruppe Nr.	Maßgebendes Beta
1	40,0	1	βv,c,1
2	47,8	2	β _{V.c.2}

Ausnutzung für Zug- und Querlasten

Zuglasten	Ausnutzung βN %	Querlasten	Ausnutzung βγ %
Stahlversagen *	23,8	Stahlversagen ohne Hebelarm *	41,1
Kombiniertes Versagen durch Herausziehen	42,0	Rückseitiger Betonausbruch	22,2
und Betonausbruch		Betonkantenbruch	47,8
Betonausbruch	32,9		,

^{*} Ungünstigster Anker

Ausnutzung für kombinierte Zug- und Querbelastung

$\beta_{N} = \beta_{N,p;1} = 0,42 \le 1$ $\beta_{V} = \beta_{V,c;2} = 0,48 \le 1$ $\beta_{N}^{1,5} + \beta_{V}^{1,5} = \beta_{N,p;1}^{1,5} + \beta_{V,c;2}^{1,5} = 0,60 \le 1$	V	Nachweis erfolgreich	GI. (5.9a) GI. (5.9b) GI. (5.10)
--	---	----------------------	--

Angaben zur Ankerplatte

Ankerplattendetails

Vom Anwender ohne Nachweis festgelegte Ankerplattendicke

t = 8 mm

Profiltyp

Quadratische Hohlprofile warmgefertigt (QSH 100x4)

Technische Hinweise

Wenn der Randabstand eines Ankers kleiner als der charakteristische Randabstand $C_{Cr,N} = 180 \text{ mm}$ (Bemessungsverfahren A) ist, ist eine Längsbewehrung mit einem Durchmesser von d = 6mm im Bereich der Verankerungstiefe des Ankers erforderlich.

Bei der Bemessung wurde vorausgesetzt, dass die Ankerplatte unter den einwirkenden Schnittkräften eben bleibt. Deshalb muss sie ausreichend steif sein. Die in C-Fix enthaltene Ankerplattenbemessung basiert auf einem Spannungsnachweis, erlaubt aber keine direkte Aussage über die Plattensteifigkeit

erlaubt aber keine direkte Aussage über die Plattensteifigkeit.

Die Lastweiterleitung im Beton ist für den Grenzzustand der Tragfähigkeit sowie den Grenzzustand der Gebrauchstauglichkeit nachzuweisen. Hierfür sind die erforderlichen Nachweise für das Bauteil incl. den Ankerlasten zu führen. Die weitergehenden Bestimmungen des Bemessungsverfahrens hierfür sind zu beachten.

Die Nachweise gelten nur für die Kaltbemessung.

Allgemeine Hinweise

Sämtliche in den Programmen enthaltenen Informationen und Daten beziehen sich ausschließlich auf die Verwendung von fischer-Produkten und basieren auf den Grundsätzen, Formeln und Sicherheitsbestimmungen gem. den technischen Anweisungen und Bedienungs-, Setz und Montageanleitungen usw. von fischer, die vom Anwender genau eingehalten werden müssen. Sämtliche enthaltenen Werte sind Durchschnittswerte; daher sind vor Anwendung des jeweiligen fischer-Produkts stets einsatzspezifische Tests durchzuführen. Die Ergebnisse der mittels der Software durchgeführten Berechnungen beruhen maßgeblich auf den von Ihnen einzugebenden Daten. Sie tragen daher die alleinige Verantwortung

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710 Herbesthal Tel.: +49 173 640 4273 URL: aixineering.de Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 105

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung !

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

für die Fehlerfreiheit, Vollständigkeit und Relevanz der von Ihnen einzugebenden Daten. Sie sind weiterhin alleine dafür verantwortlich, die erhaltenen Ergebnisse der Berechnung vor der Verwendung für Ihre spezifische(n) Anlage(n) durch einen Fachmann überprüfen und freigeben zu lassen, insbesondere hinsichtlich der Konformität mit geltenden Normen und Zulassungen. Das Bemessungsprogramm dient lediglich als Hilfsmittel zur Auslegung von Normen und Zulassungen ohne jegliche Gewährleistung auf Fehlerfreiheit, Richtigkeit und Relevanz der Ergebnisse oder Eignung für eine bestimmte Anwendung.

Sie haben alle erforderlichen und zumutbaren Maßnahmen zu ergreifen, um Schäden durch das Bemessungsprogramm zu verhindern oder zu begrenzen. Insbesondere müssen Sie für die regelmäßige Sicherung von Programmen und Daten sorgen sowie regelmäßig ggf. von fischer angebotene Updates des Bemessungsprogramms durchführen. Sofern Sie nicht die automatische Update-Funktion der Software nutzen, müssen Sie durch manuelle Updates über die fischer Internetseite sicherstellen, dass Sie jeweils die aktuelle und somit gültige Version des Bemessungsprogramms verwenden. Soweit Sie diese Verpflichtung schuldhaft verletzen, haftet fischer nicht für daraus entstehende Folgen, insbesondere nicht für die Wiederbeschaffung verlorener oder beschädigter Daten oder Programme.

IENT: DATE:	
nterkonstruktion Kranbahnanlage Haaren 20004	ļ.
OJECT: PROJECT:	Γ-NR:

Königin Astrid Straße 18 B-4710 Herbesthal

Tel.: +49 173 640 4273 URL: aixineering.de

Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4 AIX<mark>INEERING</mark>

Seite: 106

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

06.02.2020

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Angaben zur Montage

<u>Anker</u>

fischer Superbond-System FIS SB 390 S (auch in weiteren Kartuschengrößen verfügbar) Ankersystem Injektionsmörtel

Befestigungselement Ankerstange FIS A M 12 x 160 A4, nicht rostender Stahl, Festigkeitsklasse A4-70

Zubehör Statikmischer FIS MR rot Auspressgerät FIS DM S Druckluft-Reinigungsgerät Ölfreie Druckluft, min. 6 bar

Reinigungsbürste BS 14 Hammerbohrer SDS Plus IV 14/150/210

FIS SB 1500 S Alternative Kartuschen FIS SB 585 S

FIS SB 390 High Speed S Die dargestellten Kartuschen können alternativ zu den hervorgehobenen Kartuschen mit der gleichen Zulassungsnummer verwendet Art.-Nr. 518830

Art.-Nr. 90451

Art.-Nr. 96448 Art.-Nr. 511118 Art.-Nr. 93286 Bauseits Art.-Nr. 78180

Art.-Nr. 519453 Art.-Nr. 520526 Art.-Nr. 523300

Art.-Nr. 504153

Gewindegröße M 12 Bohrlochdurchmesser $d_0 = 14 \text{ mm}$ Bohrlochtiefe $h_1 = 120 \text{ mm}$ h_{ef} = 120 mm Verankerungstiefe Bohrverfahren Hammerbohren

Bohrlochreinigung 2 x mit Druckluft ausblasen, 2 x bürsten, 2 x mit Druckluft ausblasen

Vorsteckmontage Ringspalt nicht verfüllt Montageart Ringspalt Ringspalt nicht ver Maximales Anzugsmoment T_{inst,max} = 40,0 Nm

Schlüsselweite SW 19 mm Ankerplattendicke t = 8 mmGesamte Befestigungsdicket_{fix} = 8 mm

Tfix.max

Montagedetails

Mörtelvolumen je Bohrloch 10 ml/5 Skalenteile

Arnold Damm GmbH	06.02.2020
CLIENT:	DATE:
Unterkonstruktion Kranbahnanlage Haaren	20004
PROJECT:	PROJECT-NR:

Königin Astrid Straße 18 B-4710

Tel.: +49 173 640 4273 Herbesthal URL: aixineering.de

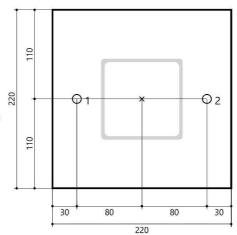
Unterkonstruktion Kranbahnanlage Haaren Position: 3.2 Auflagerverankerung QRO100x4

06.02.2020 Seite: 107

Die Weiterleitung der Auflagerkräfte in die Bodenplatte / den Baugrund ist nicht Gegenstand dieser Statischen Berechnung!

20004_Metallbau-Ruf_Brueckenlaufkran_Haaren

Ankerplattendetails


Material der Ankerplatte Ankerplattendicke Durchgangsloch im Anbauteil

S 235 (St 37) t = 8 mm d_f=14 mm

<u>Anbauteil</u>

Profiltyp

Quadratische Hohlprofile warmgefertigt (QSH 100x4)

Ankerkoordinaten

Anker-Nr.	x mm	y mm
1	-80	0
2	80	0

PROJECT:	PROJECT-NR:
Unterkonstruktion Kranbahnanlage Haaren	20004
CLIENT:	DATE:
Arnold Damm GmbH	06.02.2020